Abstract:
The present invention relates to regulation of cellular proliferation. More particularly, the present invention is directed to nucleic acids encoding NP95, which is involved in modulation of cell cycle arrest. The invention further relates to methods for identifying and using agents, including small molecule chemical compositions, antibodies, peptides, cyclic peptides, nucleic acids, RNAi, antisense nucleic acids, and ribozymes, that modulate cell cycle arrest via modulation of NP95; as well as to the use of expression profiles and compositions in diagnosis and therapy related to cell cycle regulation and modulation of cellular proliferation, e.g., for treatment of cancer and other diseases of cellular proliferation.
Abstract:
The present invention relates to regulation of cellular proliferation. More particularly, the present invention is directed to nucleic acids encoding MRE11, which is a protein involved in modulation of cellular proliferation. The invention further relates to methods for identifying and using agents, including small molecule chemical compositions, antibodies, peptides, cyclic peptides, nucleic acids, antisense nucleic acids, and ribozymes, that modulate cellular proliferation via modulation of MRE11; as well as to the use of expression profiles and compositions in diagnosis and therapy related to modulation of cellular proliferation.
Abstract:
The present invention relates to regulation of cellular proliferation. More particularly, the present invention is directed to nucleic acids encoding NP95, which is involved in modulation of cell cycle arrest. The invention further relates to methods for identifying and using agents, including small molecule chemical compositions, antibodies, peptides, cyclic peptides, nucleic acids, RNAi, antisense nucleic acids, and ribozymes, that modulate cell cycle arrest via modulation of NP95; as well as to the use of expression profiles and compositions in diagnosis and therapy related to cell cycle regulation and modulation of cellular proliferation, e.g., for treatment of cancer and other diseases of cellular proliferation.
Abstract:
The present invention relates to regulation of cellular proliferation. More particularly, the present invention is directed to nucleic acids encoding SAK, which is a protein kinase involved in modulation of cellular proliferation and cell cycle regulation. The invention further relates to methods for identifying and using agents, including small molecule chemical compositions, antibodies, peptides, cyclic peptides, nucleic acids, RNAi, antisense nucleic acids, and ribozymes, that modulate cell cycle regulation and cellular proliferation via modulation of SAK; as well as to the use of expression profiles and compositions in diagnosis and therapy related to cell cycle regulation and modulation of cellular proliferation, e.g., for treatment of cancer and other diseases of cellular proliferation.
Abstract:
The present invention relates to regulation of cellular proliferation. More particularly, the present invention is directed to nucleic acids encoding BRCA-1-Associated Protein-1 (BAP-1), Nuclear Protein 95 (NP95), Fanconi anemia group A protein (FANCA), DEAD/H box polypeptide 9 (DDX9), insulin-like growth factor 1 receptor (IGF1R), ubiquitin-conjugating enzyme E2 variant 1 (UBE2V1), aldehyde dehydrogenase, pyruvate kinase, glucose-6-phosphate dehydrogenase, HCDR-3, DEAD/H box polypeptide 21 (DDX21), serine threonine kinase 15 (ARK2), transmembrane 4 superfamily member 1, or ERCC1, which are involved in modulation of cell cycle arrest. The invention further relates to methods for identifying and using agents, including small molecule chemical compositions, antibodies, peptides, cyclic peptides, nucleic acids, RNAi, antisense nucleic acids, and ribozymes, that modulate cell cycle arrest via modulation of BRCA-1-Associated Protein-1 (BAP-1), Nuclear Protein 95 (NP95), Fanconi anemia group A protein (FANCA), DEAD/H box polypeptide 9 (DDX9), insulin-like growth factor 1 receptor (IGF1R), ubiquitin-conjugating enzyme E2 variant 1 (UBE2V1), aldehyde dehydrogenase, pyruvate kinase, glucose-6-phosphate dehydrogenase, HCDR-3, DEAD/H box polypeptide 21 (DDX21), serine threonine kinase 15 (ARK2), transmembrane 4 superfamily member 1, or ERCC1, as well as to the use of expression profiles and compositions in diagnosis and therapy related to cell cycle regulation and modulation of cellular proliferation, e.g., for treatment of cancer and other diseases of cellular proliferation.
Abstract:
Disclosed are methods of using AMPK-activating compounds, for example, in the treatment of cancer and disorders of vascular flow. Also disclosed are biomarkers for AMPK and uses thereof, for example, in the diagnosis and treatment of AMPK-linked disorders. In certain embodiments, the AMPK-activating compounds have the structural formula wherein E, J, T, D1, D2, D3, the ring system denoted by “B”, T, R3, R4, w and x are as described herein.
Abstract:
The present invention relates to regulation of cellular proliferation. More particularly, the present invention is directed to nucleic acids encoding NP95, which is involved in modulation of cell cycle arrest. The invention further relates to methods for identifying and using agents, including small molecule chemical compositions, antibodies, peptides, cyclic peptides, nucleic acids, RNAi, antisense nucleic acids, and ribozymes, that modulate cell cycle arrest via modulation of NP95; as well as to the use of expression profiles and compositions in diagnosis and therapy related to cell cycle regulation and modulation of cellular proliferation, e.g., for treatment of cancer and other diseases of cellular proliferation.
Abstract:
Disclosed are substituted pyridine compounds as well as pharmaceutical compositions and methods of use. One embodiment is a compound having the structure wherein E, J, T, the ring system denoted by “B”, T, R3, R4, w and x are as described herein. In certain embodiments, a compound disclosed herein activates the AMPK pathway, and can be used to treat metabolism-related disorders and conditions.
Abstract:
This invention is directed to methods of preventing, treating or managing cancer, preferably metastatic cancer, in a patient. The methods comprise administering an effective amount of an Axl inhibitor in combination with the administration of an effective amount of one or more chemotherapeutic agents.
Abstract:
Disclosed are substituted pyridine compounds as well as pharmaceutical compositions and methods of use. One embodiment is a compound having the structure wherein E, J, T, the ring system denoted by “B”, T, R3, R4, w and x are as described herein. In certain embodiments, a compound disclosed herein activates the AMPK pathway, and can be used to treat metabolism-related disorders and conditions.