Abstract:
Disclosed are substituted pyridine compounds as well as pharmaceutical compositions and methods of use. One embodiment is a compound having the structure wherein E, J, T, the ring system denoted by “B”, T, R3, R4, w and x are as described herein. In certain embodiments, a compound disclosed herein activates the AMPK pathway, and can be used to treat metabolism-related disorders and conditions.
Abstract:
A method of sample analysis is provided. In certain embodiments, the method comprises: a) labeling cells of a blood sample using an antibody that specifically binds to phospho-AMPK or a phosphorylated target thereof, to produce a labeled sample; and b) measuring antibody binding by a population of blood cells of the labeled sample using flow cytometry. In particular embodiments, the method may further comprise, prior to the labeling step: contacting blood with a test agent ex vivo or in vivo; and comparing the evaluation to results obtained from a reference sample of blood cells.
Abstract:
Disclosed are substituted pyridine compounds as well as pharmaceutical compositions and methods of use. One embodiment is a compound having the structure wherein E, J, T, the ring system denoted by “B”, T, R3, R4, w and x are as described herein. In certain embodiments, a compound disclosed herein activates the AMPK pathway, and can be used to treat metabolism-related disorders and conditions.
Abstract:
Disclosed are substituted pyridine compounds as well as pharmaceutical compositions and methods of use. One embodiment is a compound having the structure wherein E, J, T, the ring system denoted by “B”, T, R3, R4, w and x are as described herein. In certain embodiments, a compound disclosed herein activates the AMPK pathway, and can be used to treat metabolism-related disorders and conditions.
Abstract:
As noted above, certain aspects of this disclosure relate to a library of nucleic acid vectors, as well as a method for making the same. In certain embodiments, the library of nucleic acid vectors comprises: a plurality of nucleic acid molecules of the following formula: S1—R—S2 wherein, in each nucleic acid of the plurality: S1 and S2 are each at least 15 nucleotides in length; S1 and S2 are complementary to each other along their entire length; either S1 or S2 is complementary along its entire length to a sequence in eukaryotic mRNA; and R is a six base recognition site for a restriction endonuclease; and wherein S1 and S2 vary in nucleotide sequence between different members of the plurality. A method for amplifying a circular nucleic acid is also provided.
Abstract:
The present invention relates to regulation of cellular proliferation. More particularly, the present invention is directed to nucleic acids encoding NP95, which is involved in modulation of cell cycle arrest. The invention further relates to methods for identifying and using agents, including small molecule chemical compositions, antibodies, peptides, cyclic peptides, nucleic acids, RNAi, antisense nucleic acids, and ribozymes, that modulate cell cycle arrest via modulation of NP95; as well as to the use of expression profiles and compositions in diagnosis and therapy related to cell cycle regulation and modulation of cellular proliferation, e.g., for treatment of cancer and other diseases of cellular proliferation.
Abstract:
The present invention relates to regulation of cellular proliferation. More particularly, the present invention binding partners of peptides that block the cell cycle. These binding partners are targets for drug discovery, e.g., for small molecule cancer therapeutics.
Abstract:
Disclosed are substituted pyridine compounds as well as pharmaceutical compositions and methods of use. One embodiment is a compound having the structure wherein E, J, T, the ring system denoted by “B”, T, R3, R4, w and x are as described herein. In certain embodiments, a compound disclosed herein activates the AMPK pathway, and can be used to treat metabolism-related disorders and conditions.
Abstract:
This invention is directed to methods of preventing, treating or managing cancer, preferably metastatic cancer, in a patient. The methods comprise administering an effective amount of an Axl inhibitor in combination with the administration of an effective amount of one or more chemotherapeutic agents.
Abstract:
The present invention relates to regulation of cellular proliferation. More particularly, the present invention is directed to nucleic acids encoding SAK, which is a protein kinase involved in modulation of cellular proliferation and cell cycle regulation. The invention further relates to methods for identifying and using agents, including small molecule chemical compositions, antibodies, peptides, cyclic peptides, nucleic acids, RNAi, antisense nucleic acids, and ribozymes, that modulate cell cycle regulation and cellular proliferation via modulation of SAK; as well as to the use of expression profiles and compositions in diagnosis and therapy related to cell cycle regulation and modulation of cellular proliferation, e.g., for treatment of cancer and other diseases of cellular proliferation.