Abstract:
A compression subsystem for a computed tomography system compresses projection data to for efficient data transfer and storage. The compression includes detecting edges in the projection data corresponding to the object being imaged to set boundaries for compression operations. The edge detection compares difference samples to positive and negative thresholds to determine the boundaries. The projection samples or the difference samples are compressed between the boundaries. The boundaries are encoded and included in the compressed data. The compressed samples are decompressed prior to image reconstruction processing. Decompression includes decoding the compressed samples and the boundary values. This abstract does not limit the scope of the invention as described in the claims.
Abstract:
A method and apparatus provide signal compression for transfer over serial data links in a base transceiver system (BTS) of a wireless communication network. For the uplink, an RF unit of the BTS applies frequency domain compression of baseband signal samples, resulting from analog to digital conversion of received analog signals followed by digital downconversion, forming compressed coefficients. After transfer over the serial data link, the baseband processor then applies frequency domain decompression to the compressed coefficients prior to normal signal processing. For the downlink, the baseband processor applies frequency domain compression of baseband signal samples and transfers the compressed coefficients to the RF unit. The RF unit applies frequency domain decompression to the compressed coefficients prior to digital upconversion and digital to analog conversion, generating the analog signal for transmission over the antenna. This abstract does not limit the scope of the invention as described in the claims.
Abstract:
A method for preventing IGMP packet attacks includes two levels of anti-attack steps: anti-attacking on the basis of the source IP address of an IGMP packet; and anti-attacking on the basis of the multicast group IP address of the IGMP packet. Moreover, an apparatus for preventing IGMP packet attacks is disclosed herein. In the embodiments of the present disclosure, the attacks are prevented hierarchically in light of the source address and multicast group IP of the IGMP packet, thus effectively solving network exceptions caused by malicious IGMP packets which surge in a short time.
Abstract:
A system and method are disclosed for reading a multilevel signal from an optical disc. The method includes reading a raw analog data signal from a disc using an optical detector and adjusting the amplitude of the raw analog data signal. A timing signal is recovered from the amplitude adjusted analog data signal and correction is made for amplitude modulation of the raw analog data signal by processing the raw analog data signal and the timing signal.
Abstract:
A method and apparatus provides OFDM signal compression for transfer over serial data links in a base transceiver system (BTS) of a wireless communication network. For the uplink, an RF unit of the BTS applies OFDM cyclic prefix removal and OFDM frequency transformation of the baseband signal samples followed by frequency domain compression of the baseband signal samples, resulting from analog to digital conversion of received analog signals followed by digital downconversion, forming compressed coefficients. After transfer over the serial data link, the baseband processor applies frequency domain decompression to the compressed coefficients prior to further signal processing. For the downlink, the RF unit performs frequency domain decompression of the compressed coefficients and applies OFDM inverse frequency transformation of the decompressed coefficients and OFDM cyclic prefix insertion prior to digital upconversion and digital to analog conversion, generating the analog signal for transmission over the antenna.
Abstract:
A compression subsystem for a computed tomography system compresses projection data to for efficient data transfer and storage. The compression includes applying an attenuation profile to an array of projection data samples. The attenuation profile is a function of sample coordinates and determines attenuation values applied to the samples. The attenuated samples are encoded and packed for data transfer. Alternatively, difference operators are applied to the attenuated samples and the differences are encoded. The average number of bits per compressed sample is monitored and the attenuation profiles can be modified to achieve a desired number of bits per compressed sample. The compressed samples are decompressed prior to image reconstruction processing. Decompression includes decoding the compressed samples and applying a gain profile to the decoded samples to restore the original dynamic range. This abstract does not limit the scope of the invention as described in the claims.
Abstract:
A system and method are disclosed for reading a multilevel signal from an optical disc. The method includes reading a raw analog data signal from a disc using an optical detector and adjusting the amplitude of the raw analog data signal. A timing signal is recovered from the amplitude adjusted analog data signal and correction is made for amplitude modulation of the raw analog data signal by processing the raw analog data signal and the timing signal.
Abstract:
A method and apparatus provides OFDM signal compression for transfer over serial data links in a base transceiver system (BTS) of a wireless communication network. For the uplink, an RF unit of the BTS applies OFDM cyclic prefix removal and OFDM frequency transformation of the baseband signal samples followed by frequency domain compression of the baseband signal samples, resulting from analog to digital conversion of received analog signals followed by digital downconversion, forming compressed coefficients. After transfer over the serial data link, the baseband processor applies frequency domain decompression to the compressed coefficients prior to further signal processing. For the downlink, the RF unit performs frequency domain decompression of the compressed coefficients and applies OFDM inverse frequency transformation of the decompressed coefficients and OFDM cyclic prefix insertion prior to digital upconversion and digital to analog conversion, generating the analog signal for transmission over the antenna.
Abstract:
A computed tomography system has a stationary part, a rotatable part mounted for rotation around an object to be examined and an interface between the stationary part and the rotatable part. The rotatable part includes an x-ray source, a sensor array for detecting x-rays passing through the object to produce projection data samples, a compressor that compresses the projection data samples and a storage device that stores the compressed samples. The storage device on the rotatable part can include one or more solid state drives. For image reconstruction, the compressed samples are retrieved from the storage device, transferred across the interface to the stationary part. A decompressor at the stationary part decompresses the received compressed samples and provides decompressed samples to the image reconstruction processor. This abstract does not limit the scope of the invention as described in the claims.
Abstract:
A compression subsystem for a computed tomography system compresses projection data to for efficient data transfer and storage. The compression includes detecting edges in the projection data corresponding to the object being imaged to set boundaries for compression operations. The edge detection compares difference samples to positive and negative thresholds to determine the boundaries. The projection samples or the difference samples are compressed between the boundaries. The boundaries are encoded and included in the compressed data. The compressed samples are decompressed prior to image reconstruction processing. Decompression includes decoding the compressed samples and the boundary values. This abstract does not limit the scope of the invention as described in the claims.