Methods and systems for predicting protein-ligand coupling specificities
    6.
    发明申请
    Methods and systems for predicting protein-ligand coupling specificities 审中-公开
    用于预测蛋白质 - 配体偶联特异性的方法和系统

    公开(公告)号:US20060008831A1

    公开(公告)日:2006-01-12

    申请号:US11176621

    申请日:2005-07-08

    IPC分类号: C12Q1/68 G01N33/53 G06F19/00

    摘要: The invention provides methods and systems for predicting or evaluating protein-ligand coupling specificities. A pattern recognition model can be trained by selected sequence segments of training proteins which have a specified ligand coupling specificity. Each selected sequence segment is believed to include amino acid residue(s) that may contribute to the ligand coupling specificity of the corresponding training protein. Sequence segments in a protein of interest can be similarly selected and used to query the trained model to determine if the protein of interest has the same ligand coupling specificity as the training proteins. In one embodiment, the pattern recognition model employed is a hidden Markov model which is trained by concatenated cytosolic domains of GPCRs which have interaction preference to a specified class of G proteins. This trained model can be used to evaluate G protein coupling specificity of orphan GPCRs.

    摘要翻译: 本发明提供了用于预测或评估蛋白质 - 配体偶联特异性的方法和系统。 模式识别模型可以通过具有特定配体偶联特异性的训练蛋白质的选定序列片段来训练。 认为每个所选择的序列片段包括可能有助于相应培养蛋白质的配体偶联特异性的氨基酸残基。 可以类似地选择感兴趣的蛋白质中的序列片段,并用于查询训练的模型,以确定感兴趣的蛋白质是否具有与训练蛋白质相同的配体偶联特异性。 在一个实施例中,所采用的模式识别模型是隐藏的马尔科夫模型,其通过与特定类型的G蛋白质具有相互作用偏好的GPCR的连接的胞质结构域进行训练。 该训练模型可用于评估孤儿GPCRs的G蛋白偶联特异性。