摘要:
The present invention provides a polymer electrolyte fuel cell, which is inexpensive and has an excellent efficiency of generating electric power, by using a material alternative to a perfluoroalkylene sulfonic acid polymer. The polymer electrolyte fuel cell comprises a pair of electrodes (2, 3) consisting of an oxygen electrode (2) and a fuel electrode (3) both having a catalyst layer (5) containing a catalyst and an ion conducting material; and a polymer electrolyte membrane (1) sandwiched between the two catalyst layers (5) of the both electrodes (2, 3). The above ion conducting material contained in the above polymer electrolyte membrane (1) or in the catalyst (5) layer of at least one of the above electrodes (2, 3) comprises a sulfonated polyarylene having sulfonic acid side-chain groups.
摘要:
A composite polymer electrolyte membrane is formed from a first polymer electrolyte comprising a sulfonated polyarytene polymer and a second polymer electrolyte comprising another hydrocarbon polymer electrolyte. In the first polymer electrolyte, 2-70 mol % constitutes an aromatic compound unit with an electron-attractive group in its principal chain, while 30-98 mol % constitutes an aromatic compound unit without an electron-attractive group in its principal chain. The second polymer electrolyte is a sulfonated polyether or sulfonated polysulfide polymer electrolyte.
摘要:
A polymer electrolyte membrane obtained by subjecting a sulfonated polyarylene membrane having an initial water content of 80-300 weight % to a hot-water treatment. A composite polymer electrolyte membrane comprising a matrix made of a first sulfonated aromatic polymer having a high ion exchange capacity, and a reinforcing material constituted by a second sulfonated aromatic polymer having a low ion exchange capacity in the form of fibers or a porous membrane.
摘要:
A polymer electrolyte membrane obtained by subjecting a sulfonated polyarylene membrane having an initial water content of 80-300 weight % to a hot-water treatment. A composite polymer electrolyte membrane comprising a matrix made of a first sulfonated aromatic polymer having a high ion exchange capacity, and a reinforcing material constituted by a second sulfonated aromatic polymer having a low ion exchange capacity in the form of fibers or a porous membrane.
摘要:
A polymer electrolyte membrane obtained by subjecting a sulfonated polyarylene membrane having an initial water content of 80-300 weight % to a hot-water treatment. A composite polymer electrolyte membrane comprising a matrix made of a first sulfonated aromatic polymer having a high ion exchange capacity, and a reinforcing material constituted by a second sulfonated aromatic polymer having a low ion exchange capacity in the form of fibers or a porous membrane.
摘要:
A polymer electrolyte membrane obtained by subjecting a sulfonated polyarylene membrane having an initial water content of 80-300 weight % to a hot-water treatment. A composite polymer electrolyte membrane comprising a matrix made of a first sulfonated aromatic polymer having a high ion exchange capacity, and a reinforcing material constituted by a second sulfonated aromatic polymer having a low ion exchange capacity in the form of fibers or a porous membrane.
摘要:
A solid polymer fuel cell (1) has an electrolyte membrane (2), and an air electrode (3) and a fuel electrode (4) that closely contact to opposite sides of the electrolyte membrane (2) respectively. The electrolyte membrane (2) has a membrane core (9) comprising a polymer ion-exchange component, and a plurality of phyllosilicate particles (10) that disperse in the membrane core (9) and are subjected to ion-exchange processing between metal ions and protons, and proton conductance Pc satisfies Pc>0.05 S/cm. Owing to this, it is possible to provide the solid polymer fuel cell equipped with the electrolyte membrane (2) that has excellent high-temperature strength and can improve power-generating performance.
摘要:
An membrane electrode assembly for a fuel cell composed of a pair of electrode catalyst layers and an electrolyte membrane sandwiched between the electrode catalyst layers is configured so that the catalyst of at least one surface of the electrode catalyst layers enters in the electrolyte membrane whereby the electrode catalyst layer and the electrolyte membrane are unified with each other. In this configuration, no exfoliation occurs at the interface between the electrode catalyst layer and the electrolyte membrane, and the durability of the membrane electrode assembly can be increased even during the course of heat cycles.
摘要:
An electrode structure having a pair of electrode catalyst layers and a polymer electrolyte membrane held between both the electrode catalyst layers is provided. The polymer electrolyte membrane is a sulfonate of a hydrocarbon-based polymer comprising a main chain in which two or more benzene rings are bound together directly or through a divalent group. The membrane includes 5% or more by weight of water coordinated to protons of sulfonic acid groups. The polymer electrolyte membrane may include a fluorine-containing ion conducting polymer such that the ratio of fluorine content in the polymer electrolyte membrane to the fluorine content in the electrode catalyst layers is in the range of from 0.2 to 2.0. The electrode structure constitutes a fuel cell, which generates power when oxidizing gas is supplied to the one side of the electrode structure and reducing gas to the other side.
摘要:
The present invention provides a proton conductive membrane having capabilities of self-generating water and maintaining water, excellent ion conductivity and excellent effect of inhibiting crossover and usable for solid polymer electrolyte type fuel cells and also provides a proton conductive composition used for preparing the proton conductive membrane. The proton conductive composition comprises 100 parts by weight of a polyarylene having a sulfonic group and 0.01 to 80 parts by weight of at least one metal catalyst selected from the group consisting of platinum, gold, palladium, rhodium, iridium and ruthenium, or comprises 100 parts by weight of a polyarylene having a sulfonic group, 0.01 to 80 parts by weight of the metal catalyst, and 0.01 to 50 parts by weight of metal oxide fine particles and/or fibers in total.