Abstract:
A display apparatus according to an exemplary embodiment of the present invention includes first and second polarization plates, first and second phase delay films, and a liquid crystal display panel. A first polarization plate has a first polarization axis. A second polarization plate faces the first polarization plate and has a second polarization axis forming an angle about 85 degrees to 95 degrees with respect to the first polarization axis. A first phase delay film is disposed between the first and second polarization films and has a third polarization axis forming an angle about 40 degrees to 50 degrees with respect to the second polarization plate. A second phase delay film is disposed between the second polarization plate and the first phase delay film, and has a fourth polarization axis forming an angle about −5 degrees to 5 degree with respect to the third polarization axis.
Abstract:
A liquid crystal display (“LCD”) device includes a first substrate, a pixel electrode, a second substrate, a common electrode and an alignment layer. The first substrate includes a thin-film transistor (“TFT”) and a plurality of pixel areas disposed on the first substrate. The pixel electrode is disposed on the TFT. The second substrate is disposed opposite to the first substrate. The common electrode is disposed on the second substrate. The alignment layer includes an insulation layer and a photoalignment layer, disposed on at least one of the pixel electrode and the common electrode.
Abstract:
A method of displaying a three-dimensional (“3D”) stereoscopic image includes providing a first 3D data signal to a first display area portion of a display panel; and selectively providing a second 3D data signal or a black data signal to a second display area portion of the display panel when the first 3D data signal is being provided to the first display area.
Abstract:
A liquid crystal display includes a first substrate, a gate line and first and second data lines disposed on the first substrate, a first thin film transistor connected to the gate line and the first data line, a second thin film transistor connected to the gate line and the second data line, a color filter disposed on the first substrate, a protrusion disposed on the color filter, a first pixel electrode including a first linear electrode disposed on the protrusion and connected to the first thin film transistor, a second pixel electrode including a second linear electrode disposed on the protrusion and connected to the second thin film transistor, a second substrate disposed facing the first substrate, and blue phase liquid crystal disposed between the first substrate and the second substrate.
Abstract:
A liquid crystal display includes a first substrate, a gate line and first and second data lines disposed on the first substrate, a first thin film transistor connected to the gate line and the first data line, a second thin film transistor connected to the gate line and the second data line, a color filter disposed on the first substrate, a protrusion disposed on the color filter, a first pixel electrode including a first linear electrode disposed on the protrusion and connected to the first thin film transistor, a second pixel electrode including a second linear electrode disposed on the protrusion and connected to the second thin film transistor, a second substrate disposed facing the first substrate, and blue phase liquid crystal disposed between the first substrate and the second substrate.
Abstract:
A display substrate includes a base substrate, a reflection-polarization member, a first electrode, an insulation layer and a pixel wall. The reflection-polarization member is disposed on the base substrate to reflect and polarize incident light. The first electrode is disposed in a unit pixel area of the reflection-polarization member. The insulation layer is disposed on the first electrode. The pixel wall is disposed on the insulation layer and defines the unit pixel area. Therefore, the entire area of a unit pixel may be used as a reflective area or a transmissive area, and thus an aperture ratio may be improved in a reflection mode or a transmission mode.
Abstract:
The present invention discloses an alignment substrate that includes a base substrate and an alignment layer arranged on the base substrate. A plurality of unit pixels is defined in the base substrate. The alignment layer includes at least two sub-alignment portions dividing the unit pixel into at least two domains. Each sub-alignment portion is arranged in a different domain of the at least two domains and is aligned to have a different pretilt direction from the other sub-alignment portions.
Abstract:
A liquid crystal display is provided. The liquid crystal display has a plurality of pixels and includes a first substrate, a second substrate that is opposite to the first substrate, and a liquid crystal layer that is interposed between the first and second substrates. A phase retardation of the liquid crystal layer ranges from about 420 nm to about 500 nm.
Abstract:
A display panel includes a lower substrate, an upper substrate and a liquid crystal layer. The liquid crystal layer includes a plurality of domains, a horizontal domain boundary texture area and a vertical domain boundary texture area. The domains are disposed in a matrix shape. The horizontal domain boundary texture area extends in a first direction in a boundary between the domains adjacent to each other in a second direction and has a slope of a liquid crystal slowly (e.g., less) inclined compared to that of the domains. The vertical domain boundary texture area extends in the second direction in a boundary between the domains adjacent to each other in the first direction and has a width larger than that of the horizontal domain boundary texture area.
Abstract:
A lens panel includes a first substrate, a second substrate, and a liquid crystal layer. The first substrate includes a first base substrate, a first electrode disposed on the first base substrate, and a first alignment layer disposed on the first electrode. The first alignment layer includes a unit lens area. The unit lens area includes a first alignment area having a first azimuthal angle and a second alignment area having a second azimuthal angle. The lens panel may be controlled to function as a Fresnel lens by adjusting the azimuthal angle of the alignment layer without electrodes having micro pitch patterns