摘要:
A housing is provided with a partition wall portion that partitions an inner space of the housing into an electric motor accommodating space and a speed reducer accommodating space. The partition wall portion fixes a gear that constitutes a speed reducer. In addition, the partition wall portion has a housing boss portion, and an inner stator is fixed to the housing boss portion. Thus, heat generated by the inner stator is dissipated to the outside through the housing boss portion and the partition wall portion.
摘要:
A housing is provided with a partition wall portion that partitions an inner space of the housing into an electric motor accommodating space and a speed reducer accommodating space. The partition wall portion fixes a gear that constitutes a speed reducer. In addition, the partition wall portion has a housing boss portion, and an inner stator is fixed to the housing boss portion. Thus, heat generated by the inner stator is dissipated to the outside through the housing boss portion and the partition wall portion.
摘要:
There is provided a fluorine-containing elastomer composition assuring easy kneading and providing a crosslinked article having improved strength. The fluorine-containing elastomer composition comprises (A) an elastomer of a vinylidene fluoride/hexafluoropropylene copolymer having a branching coefficient of 30 to 300 ppm, a Mooney viscosity (ML1+10: 121° C.) of 7 to 80 and a molecular weight distribution (Mw/Mn) of 1.5 to 4, and (B) an elastomer of a vinylidene fluoride/hexafluoropropylene copolymer having a storage modulus G′ at 180° C. at 500 cpm of 500 to 900, and a mass ratio of (A)/(B) is 70/30 to 90/10.
摘要:
To provide a crosslinkable elastomer composition which is excellent in mechanical properties, ensures a small amount of outgas such as DOP and is suitable as a very clean material for molded article for semiconductor production apparatuses. The composition comprises a crosslinkable elastomer component and ultra fine powders of silicon oxide, in which the ultra fine powders of silicon oxide have 100×1019 or less hydroxyl groups per gram on surfaces thereof, dioctylphthalate adsorption of not more than 8 μg per 1 g of silicon oxide and an average particle size of not more than 0.5 μm.
摘要翻译:为了提供机械特性优异的交联性弹性体组合物,可以确保少量的DOP等排气,适合作为半导体制造装置的成型品的非常干净的材料。 该组合物包含可交联弹性体组分和氧化硅超细粉末,其中氧化硅的超细粉末在其表面上具有每克表面100×10 19或更少的羟基,邻苯二甲酸二辛酯吸附量不超过8gug / g 的氧化硅,平均粒径为0.5μm以下。
摘要:
There is provided a fluorine-containing elastomer composition assuring easy kneading and providing a crosslinked article having improved strength. The fluorine-containing elastomer composition comprises (A) an elastomer of a vinylidene fluoride/hexafluoropropylene copolymer having a branching coefficient of 30 to 300 ppm, a Mooney viscosity (ML1+10: 121° C.) of 7 to 80 and a molecular weight distribution (Mw/Mn) of 1.5 to 4, and (B) an elastomer of a vinylidene fluoride/hexafluoropropylene copolymer having a storage modulus G′ at 180° C. at 500 cpm of 500 to 900, and a mass ratio of (A)/(B) is 70/30 to 90/10.
摘要:
The present invention provides a process for preparing a fluorine-containing polymer having few branched chains and little weight change in high temperatures, which is a new process wherein composition distribution substantially does not occur. The fluorine-containing polymer is prepared by a batch copolymerization process conducted under conditions of reduced temperature of at least 0.95 and reduced pressure of at least 0.80 of the critical constant calculated from critical temperature, critical pressure and composition ratio of each monomer in the gaseous phase of the reaction vessel using the Peng-Robinson formula.
摘要:
The present invention provides the process for preparing a fluorine-containing polymer which can easily and efficiently separate a fluorine-containing polymer and water from an aqueous dispersion of a fluorine-containing polymer, and the fluorine-containing polymer obtained by the mentioned preparation process. Further the present invention provides the molded article obtained by crosslinking a curable composition comprising the above-mentioned fluorine-containing polymer and a crosslinking agent. The preparation process is a process for preparing a fluorine-containing polymer comprising a step for heat-treating an aqueous dispersion of a fluorine-containing polymer having a concentration of 3 to 70% by weight to obtain the fluorine-containing polymer having a water content of not more than 1% by weight.
摘要:
The present invention provides the process for preparing a fluorine-containing polymer which can easily and efficiently separate a fluorine-containing polymer and water from an aqueous dispersion of a fluorine-containing polymer, and the fluorine-containing polymer obtained by the mentioned preparation process. Further the present invention provides the molded article obtained by crosslinking a curable composition comprising the above-mentioned fluorine-containing polymer and a crosslinking agent. The preparation process is a process for preparing a fluorine-containing polymer comprising a step for heat-treating an aqueous dispersion of a fluorine-containing polymer having a concentration of 3 to 70% by weight to obtain the fluorine-containing polymer having a water content of not more than 1% by weight.
摘要:
The present invention provides a process for preparing a fluorine-containing polymer having few branched chains and little weight change in high temperatures, which is a new process wherein composition distribution substantially does not occur. The fluorine-containing polymer is prepared by a batch copolymerization process conducted under conditions of reduced temperature of at least 0.95 and reduced pressure of at least 0.80 of the critical constant calculated from critical temperature, critical pressure and composition ratio of each monomer in the gaseous phase of the reaction vessel using the Peng-Robinson formula; wherein when the number of monomer components in the target polymer is represented as n (n is an integer of 2 or larger), the name of each monomer component is represented as A1, A2, . . . An, the weight percentage of each monomer component A1, A2, . . . An of the target polymer composition is represented as a1, a2, . . . an (%) (a satisfies ∑ n a n = 100 ) , the weight percentage of each monomer component of the initial monomer composition is represented as a′1, a′2 . . . a′n (%) (a′ satisfies ∑ n a n ′ = 100 and a′1, a′2, . . . a′n is determined in a constant manner depending on predetermined polymerization conditions) and specific gravity of the gaseous phase monomers when polymerizing/specific gravity of the target polymer is represented as B, the composition weight ratio of additional monomers is calculated for each monomer from the formula (a1−a′1×B):(a2−a′2×B) . . . (an−a′n×B) in the order of components A1, A2, . . . An, and additional monomers containing additional monomers in the composition weight ratio of additional monomers are added.