摘要:
A solid-state imaging device includes: a substrate on which plural pixels having photoelectric converters are formed; an inorganic microlens made of an inorganic material and formed above the substrate, and an organic microlens made of an organic material and formed adjacent to the inorganic microlens so that a hem portion touches or overlaps a hem portion of the inorganic microlens.
摘要:
A solid-state imaging device includes a pixel that has a photoelectric conversion section which converts incident light into an electric signal; a color filter which is formed corresponding to the pixel; a micro lens which focuses the incident light to the photoelectric conversion section via the color filter; and an in-layer lens which is formed between the color filter and the micro lens and has a refractive index smaller than that of the micro lens.
摘要:
A solid-state imaging device includes: a first lens layer; and a second lens layer, wherein the second lens layer is formed at least at a periphery of each first microlens formed based on the first lens layer, and the second lens layer present at a central portion of each of the first microlenses is thinner than the second lens layer present at the periphery of the first microlens or no second lens layer is present at the central portion of each of the first microlenses.
摘要:
A solid-state imaging device with microlenses having a first lens layer and a second lens layer, the second lens layer being formed at least at a periphery of each microlens with either a portion of the second lens layer present at a central portion of each of the microlenses being thinner than a portion of the second lens layer present at the periphery of the microlens or no portion of the second lens layer being present at the central portion of each of the first microlenses. Between first pixel portions there is an interpixel gap, and the solid-state imaging device includes light blocking layers in alignment with the gaps.
摘要:
A solid-state imaging device includes a pixel that has a photoelectric conversion section which converts incident light into an electric signal; a color filter which is formed corresponding to the pixel; a micro lens which focuses the incident light to the photoelectric conversion section via the color filter; and an in-layer lens which is formed between the color filter and the micro lens and has a refractive index smaller than that of the micro lens.
摘要:
A solid-state image pickup device includes a semiconductor substrate having a light-incident surface, a plurality of pixels arranged on the light-incident surface, a photodiode arranged in each of the pixels, an insulating film arranged on the semiconductor substrate and configured to cover the photodiodes, wirings embedded in the insulating film, an etching stopper film distant from the lowermost wiring among the wirings, arranged adjacent to the semiconductor substrate, configured to cover at least a region where each of the photodiodes is arranged, and composed of silicon carbide, a trench arranged above each of the photodiodes so as to reach the etching stopper film, and an optical waveguide with which each of the trenches is filled, the optical waveguide having a higher refractive index than the insulating film.
摘要:
A solid-state image pickup device includes a plurality of pixels on a light-receiving surface, photodiodes disposed on the light-receiving surface of a semiconductor substrate while being partitioned on the pixel basis, signal transferring portions which are disposed on the semiconductor substrate and which read signal charges generated and stored in the photodiodes or voltages corresponding to the signal charges, insulating films disposed on the semiconductor substrate while covering the photodiodes, concave portions disposed in the insulating films, pad electrodes disposed on the insulating films, a passivation film which covers inner walls of the concave portions, which is disposed on the pad electrodes, and which has a refractive index higher than that of silicon oxide, and a core layer which is disposed on the passivation film while being filled in the concave portions and which has a refractive index higher than that of silicon oxide.
摘要:
Disclosed herein is a method of manufacturing a solid state imaging device, including the steps of: forming a light receiving portion in a light receiving area of a semiconductor substrate; forming a pad portion in a pad area of the semiconductor substrate; forming a microlens material layer over the light receiving portion and the pad portion; providing the microlens material layer with a microlens corresponding to the light receiving portion; forming a low-reflection material layer on the microlens material layer; etching the microlens material layer and the low-reflection material layer over the pad portion to form an opening; and imparting hydrophilicity to a surface of the low-reflection material layer and an inside portion of the opening by a normal temperature oxygen radical treatment.
摘要:
Disclosed herein is a solid-state image pickup device including a solid-state image pickup element operable to produce an electric charge according to the amount of light received, a lens disposed on the upper side of a pixel of the solid-state image pickup element, a protective film which covers the upper side of the lens and a surface of which is flattened, and a surface film which is formed at the surface of the protective film and which is higher in hydrophilicity than the inside of the protective film.
摘要:
A solid-state imaging device includes a semiconductor substrate having a pixel region including a photoelectric conversion portion, a wiring portion including a conductor line and disposed on the semiconductor substrate with an insulating film therebetween, a metal pad connected to the conductor line, a pad-coating insulating film coating the metal pad, and a waveguide material layer. The wiring portion and the pad-coating insulating film each have an opening therein over the photoelectric conversion portion, and the openings continue from each other to define a waveguide opening having an open side and a closed side. The waveguide material layer is disposed in the waveguide opening and on the pad-coating insulating film with a passivation layer therebetween. The pad-coating insulating film has a thickness of 50 to 250 nm and a face defining the opening. The face is slanted so as to diverge toward the open side of the opening.