摘要:
The present invention provides an image decoding apparatus that realizes speed-up processing of taking out an MR (macroblock remainder) from a fixed length unit that consists of a first DCT block and the MR, without increasing cost. A Setup processor 3 outputs one out of a plurality of fixed length units that constitute an SB (synchronized block). First, calculation is performed for a length from a beginning of the fixed length unit to a EOB (end of block) that is included in the fixed length unit. The calculated length is then used as an offset in taking out the MR. Then an end portion of a second DCT block that is included in the MR is combined with a corresponding beginning portion of the second DCT block, in order to obtain the complete second DCT block. The complete second DCT block is outputted to a variable length code decoder 13.
摘要:
A pixel calculating device that performs vertical filtering on pixel data in order to reduce frame data in a vertical direction. The pixel calculating device includes a decoding unit 401 for decoding compressed video data to produce frame data, frame memory 402 for storing the frame data, a filtering unit 403 for reducing the frame data in a vertical direction by the vertical filtering to produce a reduced image, buffer memory 404 for storing the reduced image outputted from filtering unit 403, and a control unit 406 for controlling filtering unit 403 based on a decoding state of the video data by decoding unit 401 and a filtering state of the frame data by filtering unit 403, so that overrun and underrun do not occur in filtering unit 403.
摘要:
A pixel calculating device for performing vertical filtering that includes 16 pixel processing units 1 to 16 and an input buffer group 22 storing 16 pieces of pixel data and filter coefficients. Each of the pixel processing units performs operations using the pixel data and a filter coefficient supplied from input buffer group 22, and then acquires pixel data from an adjacent pixel processing unit. Further operations are performed by each of the pixel processing units using the acquired pixel data and operation results are accumulated. Filtering is carried out through a repetition of this acquiring and accumulation process, the number of taps being determined by the number of repetitions.
摘要:
A transcoder for resizing video data and outputting the resized video data to a reproduction apparatus. The reproduction apparatus reproduces the resized video data by repeating a display period and a non-display period alternately. The transcoder includes: a resizing unit that resizes the video data; and a control unit that causes the resizing unit to resize the video data to first video data having a first resolution so that the reproduction apparatus displays one image during each display period, and causes the resizing unit to resize, during each period between the resizing of the video data to the first video data, the video data to second video data having a second resolution that is lower than the first resolution.
摘要:
A transcoder for resizing video data and outputting the resized video data to a reproduction apparatus. The reproduction apparatus reproduces the resized video data by repeating a display period and a non-display period alternately. The transcoder includes: a resizing unit that resizes the video data; and a control unit that causes the resizing unit to resize the video data to first video data having a first resolution so that the reproduction apparatus displays one image during each display period, and causes the resizing unit to resize, during each period between the resizing of the video data to the first video data, the video data to second video data having a second resolution that is lower than the first resolution.
摘要:
When an OSD data storage area for storing OSD data needs to be reserved, an area of a frame storage apparatus that should store macroblocks corresponding to an invisible area on a screen is allocated as the OSD data storage area. There is no degradation in picture quality. When doing so, the data reduction control unit 64 receives an instruction to reserve the OSD data storage area and discards the corresponding macroblocks. The OSD data access unit 63 writes the OSD data into an area of the frame storage apparatus that was assigned to store the discarded macroblocks.
摘要:
A transfer-target unit outputs commands for data reading and data writing. An address generator generates control signals in accordance with the commands, and outputs the number of bytes of data first transferred by read access. A command generator generates control commands in accordance with the control signals to control an SDRAM. At this time the command generator judges the number of transferred bytes to control so that the SDRAM executes instructions in order from an instruction which is the most efficient in data transfer. That is, in the case where data is read across a bank boundary, the command generator judges which is to be executed first between read processing in a bank 0 and active processing in a bank1, to control the SDRAM. A data processor mediates data transfer between the transfer-target unit and the SDRAM in accordance with the control commands. In this way, it is possible to issue commands so as to terminate data transfer in the minimum number of cycles in the case where data read processing is continuously performed to different banks. The number of cycles required for two continuous access (access to the bank 0 and the bank 1) can be thus reduced, thereby increasing effective transfer rates of the SDRAM.
摘要:
Bitstream analyzing unit 111 fetches a coded block pattern and a coded quantized DCT coefficient from each block in a bitstream. Entropy decoding unit 112 decodes the coded block pattern into a block pattern and decodes the coded quantized DCT coefficient into pairs of a run length and an effectiveness factor. Dequantization unit 115 generates orthogonal transformation coefficients from the pairs of a run length and an effectiveness factor. Inverse Discrete Cosine Transform (IDCT) unit 110 generates a difference image from the orthogonal transformation coefficients. Decode controlling unit 110 instructs first selecting unit 118 to select constants “0”output from first constant generating unit 117 when the image is a “skipped” block. Image storage unit 120 stores a plurality of reference frame pictures having been decoded. Image restoring unit 119 restores an original block by adding a decoded difference image to a reference block read from the reference frame pictures stored in the image storage unit 120.
摘要:
A media processing apparatus is made up of an I/O processing unit for performing input/output processing which asynchronously occurs due to an external factor and a decode processing unit for performing decode processing mainly for decoding of data streams stored in a memory in parallel with the input/output processing. The input/output processing includes receiving the data streams which are asynchronously inputted, storing the inputted data streams in the memory, and supplying the data streams from the memory to the decode processing unit. The decode processing unit is made up of a sequential processing unit mainly performing condition judgements on the data streams and a routine processing unit performing decode processing on compressed video data aside from header analysis of the compressed video data in parallel with the sequential processing. Accordingly, the input/output processing means and the decode processing means are respectively charged with the asynchronous processing and the decode processing, and the input/output processing means and the decode processing means operate in parallel as in pipeline processing. As a result, the decode processing means can be devoted to the decode processing, regardless of asynchronous processing. Accordingly, processes including input processing of stream data, decode processing of the inputted data, and output processing of decoded data are executed efficiently.
摘要:
A media processing apparatus is made up of an I/O processing unit for performing input/output processing which asynchronously occurs due to an external factor and a decode processing unit for performing decode processing mainly for decoding of data streams stored in a memory in parallel with the input/output processing. The input/output processing includes receiving the data streams which are asynchronously inputted, storing the inputted data streams in the memory, and supplying the data streams from the memory to the decode processing unit. The decode processing unit is made up of a sequential processing unit mainly performing condition judgements on the data streams and a routine processing unit performing decode processing on compressed video data aside from header analysis of the compressed video data in parallel with the sequential processing. Accordingly, the input/output processing means and the decode processing means are respectively charged with the asynchronous processing and the decode processing, and the input/output processing means and the decode processing means operate in parallel as in pipeline processing. As a result, the decode processing means can be devoted to the decode processing, regardless of asynchronous processing. Accordingly, processes including input processing of stream data, decode processing of the inputted data, and output processing of decoded data are executed efficiently.