摘要:
Disclosed herein is a method of measuring a dielectric constant of a Printed Circuit Board (PCB) for a Rambus Inline Memory Module (RIMM), which includes the steps of measuring a length of a Rambus product of a PCB, applying an input waveform to the Rambus product at a certain probing position and obtaining a cross point of rising times of the input waveform and an output waveform generated by reflection of the input waveform, obtaining time corresponding to the cross point, and calculating a dielectric constant by substituting the measured length of the Rambus product and the obtained time for corresponding variables of a dielectric constant calculating equation.
摘要:
Disclosed herein is an optical signal coupling block, and a multi-layer printed circuit board and the method for coupling optical signals between layers of a multi-layer printed circuit board (PCB) using optical signal coupling blocks. The optical signals between the layers are coupled through the steps of forming a plurality of optical via holes in the multi-layer PCB to which optical waveguides for transmitting optical signals are attached; inserting the optical signal coupling blocks into the plural optical via holes such that the optical signal coupling blocks are connected to the optical waveguides to transmit the optical signals; forming at least one connection part to couple optical signals between the optical waveguides and the optical signal coupling blocks; and interconnecting the optical waveguides and the optical signal coupling blocks by aligning positions of the optical waveguides and the optical signal coupling blocks.
摘要:
Disclosed is an optical printed circuit board (PCB) for long-distance signal transmission, which is combined with fiber blocks and pipe blocks embedded in opto-via holes to form a multi-layered optical PCB, and transmits an optical signal using a fiber ribbon when an optical signal transmission distance between layers constituting the multi-layered optical PCB is longer than a length of an optical waveguide element used in conjunction with a silicon substrate. The optical PCB comprises a base substrate including an insulating material, a copper foil, and an opto-via hole, and an optical signal transmission member attached to the base substrate to horizontally transmit an optical signal. An optical signal connection member is horizontally connected to the optical signal transmission member to transmit the optical signal across a desired distance. Therefore, an optical PCB of the present invention is advantageous in that an optical waveguide, a pipe block, and a fiber block are horizontally and optionally arranged and attached to each other, thereby transmitting an optical signal across a longer distance than a length of a silicone substrate.
摘要:
The present invention discloses a multi-layer Printed Circuit Board (PCB) and method for coupling block type multichannel optical signals, the method including the steps of i) forming one or more first optical via holes to allow one or more first optical signal coupling blocks to be inserted therein, ii) aligning a first optical waveguide and the first optical signal coupling blocks so that the first optical waveguide is interconnected to the first optical signal coupling blocks via an optical signal, iii) attaching a first fixing guide to a base board to fasten the first optical signal coupling blocks, iv) removing the first fixing guide and forming one or more second optical via holes to allow one or more second optical signal coupling blocks to be inserted therein, and v) repeatedly performing steps i) to iv) as many times as a number of layers of the multi-layer PCB.
摘要:
Disclosed is a method of fabricating a multi-layered PCB, in which the optical waveguide component is inserted into the PCB in such a way that a prepreg adhesive does not block an optical signal entrance of the optical waveguide. The method comprises pre-routing a portion of an adhesive meeting the optical waveguide to remove said portion, processing an adhesive weeping prevention layer so as to prevent the adhesive from blocking the optical signal entrance of the optical waveguide, arranging the optical waveguide, the adhesive, and the adhesive weeping prevention layer on a copper clad laminate, and combining the optical waveguide, a prepreg, and the adhesive weeping prevention layer with each other into a single structure. The adhesive weeping prevention layer is selected from the group consisting of a prepreg, a single-sided copper clad laminate, a thermally curable resin, a heat spreader, and an unclad.
摘要:
Disclosed is a method of fabricating a multi-layered PCB, in which the optical waveguide component is inserted into the PCB in such a way that a prepreg adhesive does not block an optical signal entrance of the optical waveguide. The method comprises pre-routing a portion of an adhesive meeting the optical waveguide to remove said portion, processing an adhesive weeping prevention layer so as to prevent the adhesive from blocking the optical signal entrance of the optical waveguide, arranging the optical waveguide, the adhesive, and the adhesive weeping prevention layer on a copper clad laminate, and combining the optical waveguide, a prepreg, and the adhesive weeping prevention layer with each other into a single structure. The adhesive weeping prevention layer is selected from the group consisting of a prepreg, a single-sided copper clad laminate, a thermally curable resin, a heat spreader, and an unclad. Therefore, the method is advantageous in that the prepreg and the adhesive weeping prevention layer are pre-routed to prevent epoxy resin from blocking the optical signal entrance of the optical waveguide, thereby facilitating precise interfacing of optical signals.
摘要:
Disclosed is a method of attaching an optical waveguide component to a printed circuit board, which is a double-sided or a multilayer printed circuit board, through pre-bonding and main-bonding by use of an adhesive tape. Prior to being attached to the printed circuit board, the optical waveguide component is preferably subjected to a plasma surface treatment to give a surface roughness thereto. The present method is advantageous in that the optical waveguide component can be attached to the printed circuit board with improved flatness and precise alignment without causing chemical or thermal damage to the optical waveguide component.
摘要:
Disclosed is a method of attaching an optical waveguide component to a printed circuit board, which is a double-sided or a multilayer printed circuit board, through pre-bonding and main-bonding by use of an adhesive tape. Prior to being attached to the printed circuit board, the optical waveguide component is preferably subjected to a plasma surface treatment to give a surface roughness thereto. The present method is advantageous in that the optical waveguide component can be attached to the printed circuit board with improved flatness and precise alignment without causing chemical or thermal damage to the optical waveguide component.
摘要:
Disclosed is a printed circuit board with opto-via holes for transmitting an optical signal to an optical waveguide in the PCB, and a process of forming the opto-via holes. The process comprises forming a plurality of via holes on a plurality of copper clad laminates using a drill, plating an inner wall of each via hole, exposing and etching the plated portions of an upper and lower side of each copper clad laminate to form a circuit pattern on the upper and lower side of the copper clad laminate, layering the patterned copper clad laminates on each other using an insulating resin adhesive, and removing the insulating resin adhesive in the predetermined via holes to form opto-via holes. Therefore, the process is advantageous in that the optical signal is stably transmitted to the optical waveguide in the PCB without damage to the optical waveguide directly exposed to an external environment, and the optical waveguide suitable to physical properties of the material constituting the PCB is easily inserted between the inner layer and the outer layer.
摘要:
The present invention discloses an optical printed circuit board assembly with multi-channel block-type optical devices packaged therein, the printed circuit board assembly including a plate type heat spreader, a driving printed circuit board die bonded to a top of the heat spreader to convert electrical and optical signals to optical and electrical signals, respectively, a driving integrated circuit, die bonded to the top of the heat spreader and wire bonded to the driving printed circuit board.