摘要:
A method for fabricating a magnetoresistive random access memory (MRAM) device having a plurality of memory cells includes: forming a fixed magnetic layer having magnetic moments fixed in a predetermined direction; forming a tunnel layer over the fixed magnetic layer; forming a free magnetic layer, having magnetic moments aligned in a direction that is adjustable by applying an electromagnetic field, over the tunnel layer; forming a hard mask on the free magnetic layer partially covering the free magnetic layer; and unmagnetizing portions of the free magnetic layer uncovered by the hard mask for defining one or more magnetic tunnel junction (MTJ) units.
摘要:
A method for fabricating a magnetoresistive random access memory (MRAM) device having a plurality of memory cells includes: forming a fixed magnetic layer having magnetic moments fixed in a predetermined direction; forming a tunnel layer over the fixed magnetic layer; forming a free magnetic layer, having magnetic moments aligned in a direction that is adjustable by applying an electromagnetic field, over the tunnel layer; forming a hard mask on the free magnetic layer partially covering the free magnetic layer; and unmagnetizing portions of the free magnetic layer uncovered by the hard mask for defining one or more magnetic tunnel junction (MTJ) units.
摘要:
An integrated circuit structure includes a first fixed magnetic element; a second fixed magnetic element; and a composite free magnetic element between the first and the second fixed magnetic elements. The composite free magnetic element includes a first free layer and a second free layer.
摘要:
The present disclosure provides a semiconductor memory device. The device includes a bottom electrode over a semiconductor substrate; an anti-ferromagnetic layer disposed over the bottom electrode; a pinned layer disposed over the anti-ferromagnetic layer; a barrier layer disposed over the pinned layer; a first ferromagnetic layer disposed over the barrier layer; a buffer layer disposed over the first ferromagnetic layer, the buffer layer including tantalum; a second ferromagnetic layer disposed over the buffer layer; and a top electrode disposed over the second ferromagnetic layer.
摘要:
A magnetic tunnel junction (MTJ) etching process uses a sacrifice layer. An MTJ cell structure includes an MTJ stack with a first magnetic layer, a second magnetic layer, and a tunnel barrier layer in between the first magnetic layer and the second magnetic layer, and a sacrifice layer adjacent to the second magnetic layer, where the sacrifice layer protects the second magnetic layer in the MTJ stack from oxidation during an ashing process. The sacrifice layer does not increase a resistance of the MTJ stack. The sacrifice layer can be made of Mg, Cr, V, Mn, Ti, Zr, Zn, or any alloy combination thereof, or any other suitable material. The sacrifice layer can be multi-layered and/or have a thickness ranging from 5 Å to 400 Å. The MTJ cell structure can have a top conducting layer over the sacrifice layer.
摘要:
Apparatus and methods are disclosed herein for a reverse-connection STT MTJ element of a MRAM to overcome the source degeneration effect when switching the magnetization of the MTJ element from the parallel to the anti-parallel direction. A memory cell of a MRAM having a reverse-connection MTJ element includes a switching device having a source, a gate, and a drain, and a reverse-connection MTJ device having a free layer, a fixed layer, and an insulator layer interposed between the free layer and the fixed layer. The free layer of the reverse-connection MTJ device is connected to the drain of the switching device and the fixed layer is connected to a bit line (BL). The reverse-connection MTJ device applies the lower IMTJ capability of the memory cell caused by the source degeneration effect to the less stringent IMTJ(AP->P) while preserving the higher IMTJ capability for the more demanding IMTJ(P->AP).
摘要:
A MRAM cell structure includes a bottom electrode; a magnetic tunnel junction unit disposed on the bottom electrode; a top electrode disposed on the magnetic tunnel junction unit; and a blocking layer disposed on the top electrode, wherein the blocking layer is wider than the magnetic tunnel junction unit for preventing against formation of a short circuit between a contact and the magnetic tunnel junction unit.
摘要:
The present disclosure provides a semiconductor memory device. The device includes a bottom electrode over a semiconductor substrate; an anti-ferromagnetic layer disposed over the bottom electrode; a pinned layer disposed over the anti-ferromagnetic layer; a barrier layer disposed over the pinned layer; a first ferromagnetic layer disposed over the barrier layer; a buffer layer disposed over the first ferromagnetic layer, the buffer layer including tantalum; a second ferromagnetic layer disposed over the buffer layer; and a top electrode disposed over the second ferromagnetic layer.
摘要:
A MRAM cell structure includes a bottom electrode; a magnetic tunnel junction unit disposed on the bottom electrode; a top electrode disposed on the magnetic tunnel junction unit; and a blocking layer disposed on the top electrode, wherein the blocking layer is wider than the magnetic tunnel junction unit for preventing against formation of a short circuit between a contact and the magnetic tunnel junction unit.
摘要:
The present disclosure provides a MTJ stack for an MRAM device. The MTJ stack includes a pinned ferromagnetic layer over a pinning layer; a tunneling barrier layer over the pinned ferromagnetic layer; a free ferromagnetic layer over the tunneling barrier layer; a conductive oxide layer over the free ferromagnetic layer; and a oxygen-based cap layer over the conductive oxide layer.