摘要:
A method and apparatus for texture image compression in a 3D video coding system are disclosed. Embodiments according to the present invention derive depth information related to a depth map associated with a texture image and then process the texture image based on the depth information derived. The invention can be applied to the encoder side as well as the decoder side. The encoding order or decoding order for the depth maps and the texture images can be based on block-wise interleaving or picture-wise interleaving. One aspect of the present invent is related to partitioning of the texture image based on depth information of the depth map. Another aspect of the present invention is related to motion vector or motion vector predictor processing based on the depth information.
摘要:
A device for use with a frame generating portion that is arranged to receive picture data corresponding to a plurality of pictures and to generate encoded video data for transmission across a transmission channel having an available bandwidth. The frame generating portion can generate a frame for each of the plurality of pictures to create a plurality of frames. The encoded video data is based on the received picture data. The device includes a distortion estimating portion and inclusion determining portion and an extracting portion. The distortion estimating portion can estimate a distortion. The inclusion determining portion can establish an inclusion boundary based on the estimated distortion. The extracting portion can extract a frame from the plurality of frames based on the inclusion boundary.
摘要:
A fast video encoder (100) and method (500) for selecting (809) Inter macro-block mode or intra macro-block mode is provided. The method can include estimating (502) a rate-distortion cost (801) of a plurality of predictors (203) for coding a video (201), selecting (504) a predictive coding mode for the video based on a minimization of the rate-distortion cost, and coding (505) the image using a predictive mode associated with the minimum rate-distortion cost. The rate-distortion cost can be estimated across Intra macro-block modes and Inter macro-block modes for reducing a computational complexity. Rate-Distortion costs can be terminated early (524) based on statistical information (522) across a plurality of predictors for increasing an encoding speed. A fast estimation of the rate-distortion cost associated with the Intra macro-block mode for making inter/intra macro-block mode decision in a video coding system by exploiting the coding statistics across prediction modes is presented.
摘要:
An apparatus and method is provided for highly scalable intraframe video coding. The conventional macroblock DCT tools are integrated with the subband filter banks for the improved efficiency of scalable compression. The enhancement layers are represented in a subband domain and coded by an inter-layer frame texture coder utilizing inter-layer prediction signal formed by the decoded previous layer. Each quality enhancement layer is additionally scalable in resolution.
摘要:
Disclosed is an image encoder that divides a digital image into a set of “macroblocks.” If appropriate, a macroblock is “downsampled” to a lower resolution. The lower-resolution macroblock is then encoded by applying spatial (and possibly temporal) prediction. The “residual” of the macroblock is calculated as the difference between the predicted and actual contents of the macroblock. The low-resolution residual is then either transmitted to an image decoder or stored for later use. In some embodiments, the encoder calculates the rate-distortion costs of encoding the original-resolution macroblock and the lower-resolution macroblock and then only encodes the lower-resolution macroblock if its cost is lower. When a decoder receives a lower-resolution residual, it recovers the lower-resolution macroblock using standard prediction techniques. Then, the macroblock is “upsampled” to its original resolution by interpolating the values left out by the encoder. The macroblocks are then joined to form the original digital image.
摘要:
A system for processing video imaging information, corresponding electronic device, and method of processing video imaging information, are disclosed. In at least one embodiment, the electronic device includes a coder capable of compressing the imaging information for transmission via a communications channel, the video imaging information pertaining to a plurality of video source frames including a current source frame. The coder includes means for performing a super-resolution operation in relation to previous frame information representative of at least one of the video source frames occurring prior to the current source frame, the super-resolution operation being performed prior to at least some of the video imaging information corresponding to the current source frame being coded or decoded.
摘要:
A method and apparatus for encoding and decoding video performs transformation of at least a portion of a high-resolution video frame into a low resolution image and a plurality of enhancement data sets, encodes the low resolution image as a primary coded picture in a bitstream format and encodes each of the plurality of enhancement data sets as a different redundant coded picture in the bitstream format. For decoding, a decoded low resolution image and a plurality of decoded enhancement data sets are generated and an inverse transform is performed to construct a decoded high-resolution mage. The primary coded picture and a redundant coded picture may be formatted according to the ITU-T H.264 Advanced Coding specification. The transform may be a polyphase or a sub-band transform.
摘要:
An image (a still image or a frame of a video) is divided into macroblocks. The content of a macroblock is predicted based on the content of other macroblocks that are spatially or temporally close to the instant macroblock. The prediction is compared against the actual macroblock content to yield a residual value. The residual is then transformed by a discrete cosine (“DCT”) transformation. The resulting DCT coefficients are grouped into subbands. The subbands are encoded using embedded zero block bitplane coding (“EZBC”), and the EZBC output is sent to a decoder (usually on a device remote from the encoder). The EZBC output is also decoded by a subband-dequantizer process whose output coefficients are fed into an inverse DCT to reconstruct the residual signal. The reconstructed residual is used to refine the coding process.
摘要:
A method and apparatus for encoding and decoding video performs transformation of at least a portion of a high-resolution video frame into a low resolution image and a plurality of enhancement data sets, encodes the low resolution image as a primary coded picture in a bitstream format and encodes each of the plurality of enhancement data sets as a different redundant coded picture in the bitstream format. For decoding, a decoded low resolution image and a plurality of decoded enhancement data sets are generated and an inverse transform is performed to construct a decoded high-resolution image. The primary coded picture and a redundant coded picture may be formatted according to the ITU-T H.264 Advanced Coding specification. The transform may be a polyphase or a sub-band transform.
摘要:
A method of coding video content. The method can include, identifying a first plurality of image blocks within a picture based on at least a first image characteristic that is common to each of the first plurality of image blocks. A first image block group can be dynamically defined. At least one of the image blocks can be selected as a predictor block to predict other image blocks within the first image block group. In another arrangement, at least a first image block and a second image block can be identified within a picture. The second image block can be predicted from the first image block. A displacement vector can be defined to associate the second image block with the first image block. A value representing the displacement vector can be included within a header of the second image block.