摘要:
A method includes performing a grinding on a backside of a semiconductor substrate. An image sensor is disposed on a front side of the semiconductor substrate. An impurity is doped into a surface layer of the backside of the semiconductor substrate to form a doped layer. A multi-cycle laser anneal is performed on the doped layer.
摘要:
A method includes performing a grinding on a backside of a semiconductor substrate. An image sensor is disposed on a front side of the semiconductor substrate. An impurity is doped into a surface layer of the backside of the semiconductor substrate to form a doped layer. A multi-cycle laser anneal is performed on the doped layer.
摘要:
A method is disclosed to detect the voltage of a limit switch in an optical disc drive. The method includes following steps: loading an optical disc when the voltage of the limit switch is at a high level, completing the disc loading process when the voltage is changed to a low level, sampling the voltage of the limit switch predetermined times when the voltage is changed to the high level again, detecting the sampling voltages, completing the disc ejecting process when the sampling voltages are all at the high level, and determining a voltage bouncing to maintain the disc loaded status to avoid disc ejection misjudgment of the optical disc drive when the sampling voltages are not all at the high level.
摘要:
The invention is to provide a restraining device of an optical disk drive in which a traverse is disposed. A transmission unit rotates a roller to, load/unload a disc, and drives a slider to move the roller. The transmission unit includes the restraining device moving with the roller. When the optical disk drive carries a disc, the slider moves to release the traverse and push down the roller to move the restraining device away from the vibration range of the traverse. When the optical disk drive does not carry a disc, the slider moves to restrain the traverse and release the roller to move the restraining device close to the front end of the traverse. The vibration range of the traverse is restrained to protect the gear teeth from damage.
摘要:
This invention uses the pattern-based signal to accelerate the evaluation process as a means to replace complicated computing procedures. This invention is constructed through implementing absolute coordinates to produce pattern-based signals by position and two optical sensor signals, and through conducting the feature extraction process. This process produces feature signals of sidelong and overlapped issues. Furthermore, through transforming signals, feature signals can be handled by the digital data processor. Thus, this invention can achieve the three main objectives of wafer mapping.
摘要:
The present disclosure relates to a method of forming a back-side illuminated CMOS image sensor (BSI CIS). In some embodiments, the method comprises forming a plurality of photodetectors within a front-side of a semiconductor substrate. An implant is performed on the back-side of the semiconductor substrate to form an implantation region having a doping concentration that is greater in the center than at the edges of the semiconductor substrate. The back-side of the workpiece is then exposed to an etchant, having an etch rate that is inversely proportional to the doping concentration, which thins the semiconductor substrate to a thickness that allows for light to pass through the back-side of the substrate to the plurality of photodetectors. By implanting the substrate prior to etching, the etching rate is made uniform over the back-side of the substrate improving total thickness variation between the photodetectors and the back-side of the substrate.
摘要:
A semiconductor device is disclosed. The device includes a substrate; a first metal layer overlying the substrate; a dielectric layer overlying the first metal layer; and a second metal layer overlying the dielectric layer, wherein the first metal layer comprises: a first body-centered cubic lattice metal layer; a first underlayer, underlying the first body-centered cubic lattice metal layer, wherein the first underlayer is metal of body-centered cubic lattice and includes titanium (Ti), tungsten (W), molybdenum (Mo) or niobium (Nb); and a first interface of body-centered cubic lattice between the first body-centered cubic lattice metal layer and the first underlayer.
摘要:
A slot-in type disk drive fastens a clamping unit with two protrusions around its periphery on the central hole of a base plate. A front positioning part utilizes a stick to link a front right positioning bar and a front left positioning bar to synchronously open or close. A locking rod has a limiting pin inserted into an arc slot on the side of the base plate, and protrudes a locking end from the rear end. A rear positioning part utilizes an idle gear to link rear right and rear left positioning bars to synchronously open or close. The locking end can insert a first or second positioning recess on the rear left positioning bar and a touch block of the locking rod leans against the first protrusion. A lever is disposed on the rear right positioning bar to link a linkage plate set by one end.
摘要:
A method for setting an actual operation frequency of a memory is provided. The method includes the following steps. First, a memory model list is provided for selecting a memory model. Then, an estimation operation frequency of the memory is obtained according to the selected model. Finally, the operation frequency of a front side bus (FSB) is adjusted and cooperated with a frequency transformation ratio to generate the actual operation frequency of the memory according to the estimation operation frequency.
摘要:
A method for forming a semiconductor structure includes forming a dielectric layer over a substrate. A first non-conductive barrier layer is formed over the dielectric layer. At least one opening is formed through the first non-conductive barrier layer and within the dielectric layer. A second non-conductive barrier layer is formed over the first non-conductive barrier layer and within the opening. At least a portion of the second non-conductive barrier layer is removed, thereby at least partially exposing a top surface of the first non-conductive barrier layer and a bottom surface of the opening, with the second non-conductive barrier layer remaining on sidewalls of the opening. A seed layer and conductive layer is then formed and a single polishing operation removes the seed layer and conductive layer.