摘要:
Disruption of mitogen inducible gene 6 (Mig-6) in mice by homologous recombination (KO mice) led to early onset osteoarthritis (OA) as revealed by simultaneous enlargement and deformity of multiple joints, degradation of articular cartilage and the development of bony outgrowths or osteophytes within the joint space. Because of the striking similarity to human OA, Mig-6 KO mice are a useful animal model for studying the mechanism of this disease and for testing new drugs or therapies for treating OA. These KO mice also developed epithelial hyperplasia, adenoma, and adenocarcinoma in organs such as lung, gallbladder, and bile duct. Mig-6 is therefore a tumor suppressor gene and is a candidate gene for the frequent Ip36 genetic alterations found in lung cancer. It can be used as a tumor biomarker as well as a target for cancer therapy.
摘要:
A transgenic animal model for evaluating growth, survival and/or metastasis of xenotransplanted normal or tumor cells or tissue is disclosed, in which a human growth factor, hHGF stimulates growth in vivo of human cells or tissue. A strain of Tg mice on the C3H background that is immunocompromised as a result of a homozygous scid gene has been bred which express a nucleic acid encoding hHGF/SE The ectopically expressed hHGF/SF ligand significantly enhances growth of human tumor cell lines and explanted tumor cells or tissue that express the Met receptor for hHGF. Such animals also have an enlarged normal livers and greater than normal liver regenerative capacity. Any Met-expressing hHGF-dependent human cells, including hepatocytes and various stem cells can survive and grow in such animals.
摘要:
The molecular mechanism underlying degenerative joint disease, also known as osteoarthritis (OA), is not fully understood. Disruption of mitogen inducible gene 6 (Mig-6) in mice by homologous recombination (KO mice) led to early onset OA as revealed by simultaneous enlargement and deformity of multiple joints, degradation of articular cartilage and the development of bony outgrowths or osteophytes within the joint space. The latter appeared to be derived from proliferation of mesenchymal progenitor cells followed by differentiation into chondrocytes. Because of the striking similarity to human OA, Mig-6 KO mice are a useful animal model for studying the mechanism of this disease and for testing new drugs or therapies for treating OA. These KO mice also developed epithelial hyperplasia, adenoma, and adenocarcinoma in organs such as lung, gallbladder, and bile duct. Mig-6 is therefore a tumor suppressor gene and is a candidate gene for the frequent Ip36 genetic alterations found in lung cancer. It can be used as a tumor biomarker as well as a target for cancer therapy. Mig-6 is located in human chromosome Ip36, a locus frequently associated with human lung cancer. Mig-6 is a negative regulator of EGF signaling, and like EGF, was induced by HGF/SF in human lung cancer cell lines. Frequently the receptors EGFR and Met were co-expressed, and Mig-6 was induced by both EGF and HGF/SF in a MAPK-dependent fashion. Not all tumor lines express Mig-6 in response to either EGF or HGF/SF. In these cases, missense and nonsense mutations in the Mig-6 coding region were found, as was evidence for Mig-6 transcriptional silencing.
摘要:
A transgenic animal model for evaluating growth, survival and/or metastasis of xenotransplanted normal or tumor cells or tissue is disclosed, in which a human growth factor, hHGF stimulates growth in vivo of human cells or tissue. A strain of Tg mice on the C3H background that is immunocompromised as a result of a homozygous scid gene has been bred which express a nucleic acid encoding hHGF/SE The ectopically expressed hHGF/SF ligand significantly enhances growth of human tumor cell lines and explanted tumor cells or tissue that express the Met receptor for hHGF. Such animals also have an enlarged normal livers and greater than normal liver regenerative capacity. Any Met-expressing hHGF-dependent human cells, including hepatocytes and various stem cells can survive and grow in such animals.
摘要:
Methods for determining the responsiveness of a Met-related cancer in a subject to treatment with a Met inhibitor. Kits for performing the disclosed methods are also provided. The present invention also provides a method of treating glioblastomamultiforme (GBM) in a subject in need thereof, the method comprises administering a therapeutically effective dose of a Met inhibitor in combination with a therapeutically effective dose of a epithelial growth factor receptor (EGFR) inhibitor.
摘要:
A method for predicting breast tumor metastasis entails determining the amount of met protein in tumor tissue relative to normal breast duct tissue.
摘要:
The present invention involves a method of identifying drugs which selectively inhibit the growth of particular cancer cells, which method comprises: (a) contacting with the drug at least two cancer cells derived from the same type of biological material, wherein the cancer cells differ as to the presence of a particular DNA sequence, (b) measuring the effect of the drug on the growth of the cancer cells, and (c) determining whether there is a correlation between the effect of the drug on the cancer cells and the presence or absence of the DNA sequence in the cancer cells. The present invention further involves the use of such drugs.
摘要:
Suppression of the Hepatocyte growth factor/scatter factor (HGF/SF)-Met signaling pathway by targeting the Met protein tyrosine kinase was tested as strategy for suppressing tumor growth. Using RNA interference (RNAi) technology and adenoviruses carrying siRNA (Ad Met siRNA) target sequences dramatically reduced Met expression in mouse, dog and human tumor cells. Met was suppressed using Ad Met siRNA in mouse mammary tumor (DA3) cells and Met-transformed (NIH3T3 (M114) cells as well as human prostate cancer, sarcoma, glioblastoma, gastric and ovarian cancer cells. Furthermore, the Ad Met siRNA infection reversed transformed cell morphology. Ad Met siRNA killed cancer cells by inducing apoptosis. RNAi targeting Met suppressed HGF/SF-mediated scattering as well as ligand-mediated invasion activity and growth of tumor cells. Met siRNA infection also abrogated downstream Met signaling to molecules such as Akt and p44/42 MAPK. Importantly, the Met siRNA triggered apoptosis was correlated to suppressed tumorigenicity in vivo. Intro-tumoral infection with c-met siRNA adenovirus vectors produced significant reduction in tumor growth. Thus Met RNAi is an effective weapon for targeting Met expression and for treating c-Met+ cancers.
摘要翻译:通过靶向Met蛋白酪氨酸激酶抑制肝细胞生长因子/分散因子(HGF / SF)-Met信号通路被测试作为抑制肿瘤生长的策略。 使用RNA干扰(RNAi)技术和携带siRNA(Ad Met siRNA)靶序列的腺病毒大大降低了小鼠,狗和人类肿瘤细胞中的Met表达。 Met在小鼠乳腺肿瘤(DA3)细胞和Met转化的(NIH3T3(M114)细胞以及人类前列腺癌,肉瘤,成胶质细胞瘤,胃癌和卵巢癌细胞中使用Ad Met siRNA进行抑制,此外,Ad Met siRNA感染逆转 Ad Met siRNA通过诱导凋亡来杀死癌细胞,RNAi靶向Met抑制HGF / SF介导的散射以及配体介导的侵袭活性和肿瘤细胞的生长Met siRNA感染也消除下游Met信号转导到分子,如 Akt和p44 / 42 MAPK。重要的是,Met siRNA引发的细胞凋亡与体内抑制的致瘤性相关,c-met siRNA腺病毒载体的肿瘤内感染导致肿瘤生长显着降低,因此Met RNAi是靶向Met的有效武器 表达和治疗c-Met +癌症。
摘要:
In a wide variety of human solid tumors, an aggressive, metastatic phenotype and poor clinical prognosis are associated with expression of the receptor tyrosine kinase Met. Disclosed herein are (a) a monoclonal antibody named Met4, which antibody is specific for Met, and (b) a hybridoma cell line that produces Met4. The Met4 antibody is particularly useful for detecting Met in formalin-fixed tissue. Methods of using the Met4 antibody for detection, diagnosis, prognosis, and evaluating therapeutic efficacy are provided.
摘要:
The present invention relates to a complex comprising hepatocyte growth factor (HGF) and met proto-oncogene protein. The present invention also relates to methods for detecting the presence of HGF ligand, met proto-oncogene receptor and methods for isolating either the ligand or receptor or complex comprising both. The present invention further relates to methods of diagnostic proliferative disorders and diseases such as hepatitis or hepatocarcinogenesis by detecting these ligand-receptor pairs.