Abstract:
A method of fabricating a semiconductor integrated circuit (IC) is disclosed. The method includes providing a semiconductor substrate and forming a gate trench therein. The method also includes filling in the gate trench partially with a work-function (WF) metal stack, and filling in the remaining gate trench with a dummy-filling-material (DFM) over the WF metal stack. A sub-gate trench is formed by etching-back the WF metal stack in the gate trench, and is filled with an insulator cap to form an isolation region in the gate trench. The DFM is fully removed to from a MG-center trench (MGCT) in the gate trench, which is filled with a fill metal.
Abstract:
The present disclosure involves a FinFET. The FinFET includes a fin structure formed over a substrate. A gate dielectric layer is least partially wrapped around a segment of the fin structure. The gate dielectric layer contains a high-k gate dielectric material. The FinFET includes a polysilicon layer conformally formed on the gate dielectric layer. The FinFET includes a metal gate electrode layer formed over the polysilicon layer. The present disclosure provides a method of fabricating a FinFET. The method includes providing a fin structure containing a semiconductor material. The method includes forming a gate dielectric layer over the fin structure, the gate dielectric layer being at least partially wrapped around the fin structure. The method includes forming a polysilicon layer over the gate dielectric layer, wherein the polysilicon layer is formed in a conformal manner. The method includes forming a dummy gate layer over the polysilicon layer.
Abstract:
The present disclosure involves a FinFET. The FinFET includes a fin structure formed over a substrate. A gate dielectric layer is least partially wrapped around a segment of the fin structure. The gate dielectric layer contains a high-k gate dielectric material. The FinFET includes a polysilicon layer conformally formed on the gate dielectric layer. The FinFET includes a metal gate electrode layer formed over the polysilicon layer. The present disclosure provides a method of fabricating a FinFET. The method includes providing a fin structure containing a semiconductor material. The method includes forming a gate dielectric layer over the fin structure, the gate dielectric layer being at least partially wrapped around the fin structure. The method includes forming a polysilicon layer over the gate dielectric layer, wherein the polysilicon layer is formed in a conformal manner. The method includes forming a dummy gate layer over the polysilicon layer.
Abstract:
A method of fabricating a semiconductor integrated circuit (IC) is disclosed. The method includes receiving a semiconductor device, patterning a first hard mask to form a first recess in a high-resistor (Hi-R) stack, removing the first hard mask, forming a second recess in the Hi-R stack, forming a second hard mask in the second recess in the Hi-R stack. A HR can then be formed in the semiconductor substrate by the second hard mask and a gate trench etch.
Abstract:
A method of fabricating a semiconductor integrated circuit (IC) is disclosed. The method includes receiving a semiconductor device, patterning a first hard mask to form a first recess in a high-resistor (Hi-R) stack, removing the first hard mask, forming a second recess in the Hi-R stack, forming a second hard mask in the second recess in the Hi-R stack. A HR can then be formed in the semiconductor substrate by the second hard mask and a gate trench etch.
Abstract:
The invention relates to integrated circuit fabrication, and more particularly to a metal gate structure. An exemplary structure for a CMOS semiconductor device comprises a substrate comprising an isolation region surrounding and separating a P-active region and an N-active region; a P-metal gate electrode over the P-active region and extending over the isolation region, wherein the P-metal gate electrode comprises a P-work function metal and an oxygen-containing TiN layer between the P-work function metal and substrate; and an N-metal gate electrode over the N-active region and extending over the isolation region, wherein the N-metal gate electrode comprises an N-work function metal and a nitrogen-rich TiN layer between the N-work function metal and substrate, wherein the nitrogen-rich TiN layer connects to the oxygen-containing TiN layer over the isolation region.
Abstract:
The invention relates to integrated circuit fabrication, and more particularly to a metal gate electrode. An exemplary structure for a semiconductor device comprises a substrate comprising a major surface; a first rectangular gate electrode on the major surface comprising a first layer of multi-layer material; a first dielectric material adjacent to one side of the first rectangular gate electrode; and a second dielectric material adjacent to the other 3 sides of the first rectangular gate electrode, wherein the first dielectric material and the second dielectric material collectively surround the first rectangular gate electrode.
Abstract:
The invention relates to integrated circuit fabrication, and more particularly to a metal gate electrode. An exemplary structure for a semiconductor device comprises a substrate comprising a major surface; a first rectangular gate electrode on the major surface comprising a first layer of multi-layer material; a first dielectric material adjacent to one side of the first rectangular gate electrode; and a second dielectric material adjacent to the other 3 sides of the first rectangular gate electrode, wherein the first dielectric material and the second dielectric material collectively surround the first rectangular gate electrode.
Abstract:
The present disclosure provides a method of fabricating a semiconductor device. The method includes forming a patternable layer over a substrate. The method includes forming a first layer over the patternable layer. The method includes forming a second layer over the first layer. The second layer is substantially thinner than the first layer. The method includes patterning the second layer with a photoresist material through a first etching process to form a patterned second layer. The method includes patterning the first layer with the patterned second layer through a second etching process to form a patterned first layer. The first and second layers have substantially different etching rates during the second etching process. The method includes patterning the patternable layer with the patterned first layer through a third etching process.
Abstract:
The present disclosure provides a method of fabricating a semiconductor device. The method includes forming a patternable layer over a substrate. The method includes forming a first layer over the patternable layer. The method includes forming a second layer over the first layer. The second layer is substantially thinner than the first layer. The method includes patterning the second layer with a photoresist material through a first etching process to form a patterned second layer. The method includes patterning the first layer with the patterned second layer through a second etching process to form a patterned first layer. The first and second layers have substantially different etching rates during the second etching process. The method includes patterning the patternable layer with the patterned first layer through a third etching process.