摘要:
There is provided a nickel alloy having an excellent creep strength as well as high-temperature oxidation resistance. The nickel alloy of the present invention comprises, by mass percent, Cr in a range of 11.5 to 11.9%, Co in a range of 25 to 29%, Mo in a range of 3.4 to 3.7%, W in a range of 1.9 to 2.1%, Ti in a range of 3.9 to 4.4%, Al in a range of 2.9 to 3.2%, C in a range of 0.02 to 0.03%, B in a range of 0.01 to 0.03%, Zr in a range of 0.04 to 0.06%, Ta in a range of 2.1 to 2.2%, Hf in a range of 0.3 to 0.4%, and Nb in a range of 0.5 to 0.8%, the balance being Ni and unavoidable impurities, and contains carbides and borides precipitating in crystal grains and at grain boundaries.
摘要:
There is provided a nickel alloy having an excellent creep strength as well as high-temperature oxidation resistance. The nickel alloy of the present invention comprises, by mass percent, Cr in a range of 11.5 to 11.9%, Co in a range of 25 to 29%, Mo in a range of 3.4 to 3.7%, W in a range of 1.9 to 2.1%, Ti in a range of 3.9 to 4.4%, Al in a range of 2.9 to 3.2%, C in a range of 0.02 to 0.03%, B in a range of 0.01 to 0.03%, Zr in a range of 0.04 to 0.06%, Ta in a range of 2.1 to 2.2%, Hf in a range of 0.3 to 0.4%, and Nb in a range of 0.5 to 0.8%, the balance being Ni and unavoidable impurities, and contains carbides and borides precipitating in crystal grains and at grain boundaries.
摘要:
The present invention relates to a method of forming a deposited film including a first step for setting a deposited film forming target (10) into a reaction chamber (4), a second step for filling the reaction chamber (10) with a reaction gas and a third step for applying pulse DC voltage between a first conductor (3) and a second conductor (40) spaced from each other in the reaction chamber (10). The present invention further relates to a deposited film forming device for performing the above method. Preferably, in the third step, potential difference between the first conductor (3) and the second conductor (40) is set to not less than 50V and not more than 3000V, and pulse frequency of the pulse DC voltage applied to the first and second conductors (3, 40) is set to not more than 300kHz. Duty ratio of the pulse DC voltage is set to not less than 20% and not more than 90%.
摘要:
The present invention relates to an electrophotographic photosensitive member 2 including a conductive body 20, a photoconductive layer 22 formed on the conductive body 20 using amorphous silicon, and a surface layer 23 formed on the photoconductive layer using amorphous silicon. The present invention further relates to an image forming apparatus provided with the electrophotographic photosensitive member 2. The photoconductive layer 22 has a mean roughness Ra of not more than 10 nm per 10 μm square. The surface layer 23, without undergoing grinding process, has a mean roughness Ra of not more than 10 nm per 10 μm square.
摘要翻译:本发明涉及一种电子照相感光构件2,其包括导电体20,使用非晶硅形成在导电体20上的光电导层22以及使用非晶硅形成在光电导层上的表面层23。 本发明还涉及一种设置有电子照相感光构件2的图像形成装置。光电导层22的平均粗糙度Ra每10平方米不超过10nm。 表面层23,不进行研磨处理,其平均粗糙度Ra为10m / m 2的平方。