摘要:
The invention relates to electronic device having an operation temperature range, wherein the electronic device comprises a tunable capacitor (CST) comprising a first electrode (BE), a second electrode (TE), and a dielectric (FEL) arranged between the first electrode (BE) and the second electrode (TE). The dielectric (FEL) comprises dielectric material (FEL) having a value of a relative dielectric constant (∈r) varying at least within the operation temperature range. The electronic device further comprises a temperature varying means (RES) being thermally coupled to the tunable capacitor for providing a temperature of the dielectric (FEL) causing a predetermined capacitance of the tunable capacitor (CST). The invention, which relies on the idea of varying temperature to vary a capacitance of a capacitor stack, provides an alternative tunable capacitor type for the known types. Advantageous embodiments feature high-tuning ratio, small device area, and stable capacitance value in case the temperature is well controlled. The invention further relates to a semiconductor device comprising the electronic device in accordance with the invention, to an electronic circuit comprising such electronic device, and to a method of manufacturing such electronic device.
摘要:
The invention relates to electronic device having an operation temperature range, wherein the electronic device comprises a tunable capacitor (CST) comprising a first electrode (BE), a second electrode (TE), and a dielectric (FEL) arranged between the first electrode (BE) and the second electrode (TE). The dielectric (FEL) comprises dielectric material (FEL) having a value of a relative dielectric constant (εr) varying at least within the operation temperature range. The electronic device further comprises a temperature varying means (RES) being thermally coupled to the tunable capacitor for providing a temperature of the dielectric (FEL) causing a predetermined capacitance of the tunable capacitor (CST). The invention, which relies on the idea of varying temperature to vary a capacitance of a capacitor stack, provides an alternative tunable capacitor type for the known types. Advantageous embodiments feature high-tuning ratio, small device area, and stable capacitance value in case the temperature is well controlled. The invention further relates to a semiconductor device comprising the electronic device in accordance with the invention, to an electronic circuit comprising such electronic device, and to a method of manufacturing such electronic device.
摘要:
The present invention relates to a MEMS, being developed for e.g. a mobile communication application, such as switch, tunable capacitor, tunable filter, phase shifter, multiplexer, voltage controlled oscillator, and tunable matching network. The volume change of phase-change layer is used for a bi-stable actuation of the MEMS device. The MEMS device comprises at least a bendable cantilever, a phase change layer, and electrodes. A process to implement this device and a method for using is given.
摘要:
A reconfigurable radio-frequency front-end 20 with an antenna 24 and a resonant circuit within a matching network 22. In order to provide for high tuning range with low cost and low size, a matching network 22 may comprise at least one electrically tunable passive solid-state dielectrical component 6 on a carrier substrate 2.
摘要:
A reconfigurable radio-frequency front-end 20 with an antenna 24 and a resonant circuit within a matching network 22. In order to provide for high tuning range with low cost and low size, a matching network 22 may comprise at least one electrically tunable passive solid-state dielectrical component 6 on a carrier substrate 2.
摘要:
The present invention relates to an electric component comprising at least one first MIM capacitor having a ferroelectric insulator with a dielectric constant of at least 100 between a first capacitor electrode of a first electrode material and a second capacitor electrode of a second electrode material. The first and second electrode materials are selected such that the first MIM capacitor exhibits, as a function of a DC voltage applicable between the first and second electrodes, an asymmetric capacity hysteresis that lets the first MIM capacitor, in absence of the DC voltage, assume one of at least two possible distinct capacitance values, in dependence on a polarity of a switching voltage last applied to the capacitor, the switching voltage having an amount larger than a threshold-voltage amount. The invention is applicable for ESD sensors, memories and high-frequency devices.
摘要:
A capacitive ultrasound transducer includes a first electrode, a second electrode, and a third electrode, the third electrode including a central region disposed in collapsibly spaced relation with the first electrode, and a peripheral region disposed outward of the central region and disposed in collapsibly spaced relation with the second electrode. The transducer further includes a layer of a high dielectric constant material disposed between the third electrode and the first electrode, and between the third electrode and the second electrode. The transducer may be operable in a collapsed mode wherein the peripheral region of the third electrode oscillates relative to the second electrode, and the central region of the third electrode is fully collapsed with respect to the first electrode such that the dielectric layer is sandwiched therebetween. Piezoelectric actuation, such as d31 and d33 mode piezoelectric actuation, may further be included. A medical imaging system includes an array of such capacitive ultrasound transducers disposed on a common substrate.
摘要:
A capacitive ultrasound transducer includes a first electrode, a second electrode, and a third electrode, the third electrode including a central region disposed in collapsibly spaced relation with the first electrode, and a peripheral region disposed outward of the central region and disposed in collapsibly spaced relation with the second electrode. The transducer further includes a layer of a high dielectric constant material disposed between the third electrode and the first electrode, and between the third electrode and the second electrode. The transducer may be operable in a collapsed mode wherein the peripheral region of the third electrode oscillates relative to the second electrode, and the central region of the third electrode is fully collapsed with respect to the first electrode such that the dielectric layer is sandwiched therebetween. Piezoelectric actuation, such as d31 and d33 mode piezoelectric actuation, may further be included. A medical imaging system includes an array of such capacitive ultrasound transducers disposed on a common substrate.
摘要:
A MEMS electrostatic actuator comprises first and second opposing electrode arrangements, wherein at least one of the electrode arrangements is movable. A dielectric material (24) is adjacent the one of the electrode arrangements (22). The second electrode arrangement is patterned such that it includes electrode areas (26) and spaces adjacent the electrode areas, wherein the dielectric material (24) extends at least partially in or over the spaces. The invention uses a multitude of electrode portions as one plate. The electric field lines thus form clusters between the individual electrode portions and the opposing electrode. This arrangement provides an extended range of continuous actuation and tunability.
摘要:
The present invention relates to an electric component comprising at least one first MIM capacitor having a ferroelectric insulator with a dielectric constant of at least 100 between a first capacitor electrode of a first electrode material and a second capacitor electrode of a second electrode material. The first and second electrode materials are selected such that the first MIM capacitor exhibits, as a function of a DC voltage applicable between the first and second electrodes, an asymmetric capacitance hysteresis that lets the first MIM capacitor, in absence of the DC voltage, assume one of at least two possible distinct capacitance values, in dependence on a polarity of a switching voltage last applied to the capacitor, the switching voltage having an amount larger than a threshold-voltage amount. The invention is applicable for ESD sensors, memories and high-frequency devices.