摘要:
A continuous, vapor phase method for purifying a crude mixture of 1,1,1,3,3,3-hexafluoropropane and one or more unsaturated fluorocarbon compounds, the process comprising: a) providing a photochlorinator vessel comprising 1) a UV lamp unit comprising a UV lamp located in a transparent inner well, the transparent inner well being located within a transparent outer well, the outer well being provided with material for cooling walls of the inner and outer wells; the inner well and the outer well defining separate chambers isolated from each other; and 2) a reaction vessel into which the UV lamp unit has been inserted; b) introducing into the reaction vessel a gaseous mixture of Cl2 and a distillation inseparable mixture of 1,1,1,3,3,3-hexafluoropropane and one or more unsaturated fluorocarbon compounds; c) reacting, in the gaseous state and in the presence of UV light from the photochlorinator, the mixture with Cl2 with the distillation inseparable mixture of 1,1,1,3,3,3-hexafluoropropane and one or more unsaturated compounds to saturate unsaturated fluorocarbons into a reacted mixture, and d) separating a purified 1,1,1,3,3,3-hexafluoropropane product containing less than 1000 ppm, most preferably less than 100 ppm unsaturated fluorocarbons.
摘要:
A continuous, vapor phase method for purifying a crude mixture of 1,1,1,3,3,3-hexafluoropropane and one or more unsaturated fluorocarbon compounds, the process comprising: a) providing a photochlorinator vessel comprising: 1) a UV lamp unit comprising a UV lamp located in a transparent inner well, the transparent inner well being located within a transparent outer well, the outer well being provided with material for cooling walls of the inner and outer wells; the inner well and the outer well defining separate chambers isolated from each other; and 2) a reaction vessel into which the UV lamp unit has been inserted; b) introducing into the reaction vessel a gaseous mixture of Cl2 and a distillation inseparable mixture of 1,1,1,3,3,3-hexafluoropropane and one or more unsaturated fluorocarbon compounds; c) reacting, in the gaseous state and in the presence of UV light from the photochlorinator, the mixture with Cl2 with the distillation inseparable mixture of 1,1,1,3,3,3-hexafluoropropane and one or more unsaturated compounds to saturate unsaturated fluorocarbons into a reacted mixture, and d) separating a purified 1,1,1,3,3,3-hexafluoropropane product containing less than 1000 ppm, most preferably less than 100 ppm unsaturated fluorocarbons.
摘要:
Disclosed is a process for the manufacture of 1234yf from 1,1,2,3-tetrachloropropene, abbreviated herein as “TCP,” in three integrated steps: (a) the R-1 hydrofluorination of TCP to form 1233xf in the vapor phase; (b) the R-2 hydrofluorination of 1233xf to form 244bb in either the liquid phase or in the liquid phase followed by the vapor phase; and (c) the R-3 dehydrochlorination of the 244bb in either the liquid or the vapor phase to produce 1234yf; wherein the vapor phase hydrofluorination of TCP in step (a) is carried out at a higher pressure than the liquid phase hydrofluorination of 1233xf; andwherein the HC1 generated during these steps is scrubbed with water to form an acid solution and the organic components are scrubbed with a caustic solution and then dried before further processing.
摘要:
Disclosed is a process for the manufacture of 1234yf from 1,1,2,3-tetrachloropropene, abbreviated herein as “TCP,” in three integrated steps: (a) the R-1 hydrofluorination of TCP to form 1233xf in the vapor phase; (b) the R-2 hydrofluorination of 1233xf to form 244bb in either the liquid phase or in the liquid phase followed by the vapor phase; and (c) the R-3 dehydrochlorination of the 244bb in either the liquid or the vapor phase to produce 1234yf; wherein the vapor phase hydrofluorination of TCP in step (a) is carried out at a lower pressure than the liquid phase hydrofluorination of 123xf; and wherein the HCl generated during these steps is scrubbed with water to form an acid solution and the organic components are scrubbed with a caustic solution and then dried before further processing.
摘要:
Disclosed is a process and apparatus for the catalytic hydrogenation of fluoro-olefins to fluorocarbons where the reaction is carried out in a multi-tube shell and tube reactor. Reactions involving hydrogenation of fluoro-olefins are typically exothermic. In commercial processes where a fluoro-olefin CnH2n-xFx to CnH2n-x2Fx is hydrogenated (e.g., hexafluoropropylene to 236ea, 1225ye to 245eb, and the like), inadequate management or control of heat removal may induce excess hydrogenation, decomposition and hot spots resulting in reduced yields and potential safety issues. In the hydrogenation of fluoro-olefins, it is therefore necessary to control the reaction temperature as precisely as practical to overcome challenges associated with heat management and safety.
摘要:
Disclosed is a process for producing tetrafluoropropene comprising: (a) catalytically fluorinating at least one tetrafluoropropene in a first reactor to produce HCFO-1233xf; (b) reacting said HCFO-1233xf with hydrogen fluoride in a second reactor to produce HCFC-244bb; (c) recycling at least a portion of said HCFC-244bb back to said first reactor as recycled HCFC-244bb; and (d) catalytically dehydrochlorinating said recycled HCFC-244bb in said first reactor to produce HFO-1234yf.
摘要:
A system and process for producing a fluorinated organic compound, said process comprising (a) reacting an organic compound with a fluorinations agent in the presence of a liquid-phase fluorinations catalyst to produce a product stream; (b) scrubbing said product stream to remove a substantial portion of said catalyst to form a low-catalyst content product stream; and (c) recovering said fluorinated organic compound from said low-catalyst content stream.
摘要:
Disclosed is a method for forming HFO-1234ze, and for forming compositions comprising HFO-1234ze, by (a) converting, preferably by dehydrofluorination, pentafluorpropane (HFC-245), preferably 1,1,1,3,3-pentafluorpropane (HFC-245fa), preferably by contact with a caustic solution, to a reaction product comprising cis-HFO-1234ze and trans-HFO-1234ze; and (b) contacting at least a portion, preferably substantially portion, and in certain embodiments substantially all of said reaction product with at least one isomerization catalyst to convert at least a portion, and preferably at least a substantial portion, of cis-HFO-1234ze in said reaction product to trans-HFO-1234ze.
摘要:
The present invention is directed to a combination reactor system for exothermic reactions comprising a trickle-bed reactor and a shell-and-tube reactor. This combination allows the system to efficiently remove heat while also providing the ability to control both the temperature and/or reaction progression. The trickle-bed reactor removes heat efficiently from the system by utilizing latent heat and does not require the use of a cooling or heating medium. The shell-and-tube reactor is used to further progress the reaction and provides a heat exchanger in order to introduce fluid at the desired temperature in the shell-and-tube reactor. Also, additional reactant or reactants and/or other fluids may be introduced to the shell-and-tube section of the reactor under controlled temperature conditions.
摘要:
The present invention is directed to a combination reactor system for exothermic reactions comprising a trickle-bed reactor and a shell-and-tube reactor. This combination allows the system to efficiently remove heat while also providing the ability to control both the temperature and/or reaction progression. The trickle-bed reactor removes heat efficiently from the system by utilizing latent heat and does not require the use of a cooling or heating medium. The shell-and-tube reactor is used to further progress the reaction and provides a heat exchanger in order to introduce fluid at the desired temperature in the shell-and-tube reactor. Also, additional reactant or reactants and/or other fluids may be introduced to the shell-and-tube section of the reactor under controlled temperature conditions.