摘要:
Provided is an ionized physical vapor deposition (IPVD) apparatus having a helical self-resonant coil. The IPVD apparatus comprises a process chamber having a substrate holder that supports a substrate to be processed, a deposition material source that supplies a material to be deposited on the substrate into the process chamber, facing the substrate holder, a gas injection unit to inject a process gas into the process chamber, a bias power source that applies a bias potential to the substrate holder, a helical self-resonant coil that produces plasma for ionization of the deposition material in the process chamber, one end of the helical self-resonant coil being grounded and the other end being electrically open, and an RF generator to supply an RF power to the helical self-resonant coil. The use of a helical self-resonant coil enables the IPVD apparatus to ignite and operate at very low chamber pressure such as approximately 0.1 mtorr, and to produce high density plasma with high efficiency compared to a conventional IPVD apparatus. Accordingly, a high efficiency of ionization of deposition material is achieved.
摘要:
A high-density plasma processing apparatus includes a processing chamber, having a susceptor for supporting an object to be processed positioned therein and a dielectric window positioned on the processing chamber to form an upper surface of the processing chamber. A reaction gas injection device injects a reaction gas into an interior of the processing chamber. An inductively coupled plasma (ICP) antenna, which is installed on a center of the dielectric window, transfers radio frequency (RF) power from an RF power supply to the interior of the processing chamber. A waveguide guides a microwave generated by a microwave generator. A circular radiative tube, which is installed on the dielectric window around the ICP antenna and is connected to the waveguide, radiates a microwave toward the interior of the processing chamber via a plurality of slots formed through a bottom wall of the radiative tube.
摘要:
Provided is helical resonator plasma processing apparatus. The plasma processing apparatus comprises a process chamber having a substrate holder for supporting a substrate, a dielectric tube disposed on the process chamber to communicate with the process chamber, a helix coil wounded around the dielectric tube, and an RF power source to supply RF power to the helix coil. The dielectric tube has a double tube shape and comprises an inner tube and an outer tube, and a plasma source gas inlet port to supply plasma source gas into a space between the inner tube and the outer tube is disposed in the outer tube. A control electrode to control plasma potential is disposed in the dielectric tube. This plasma processing apparatus provides a uniform plasma density distribution along a radial direction of a wafer, and easy control of the plasma potential in the process chamber.
摘要:
Provided is a microwave plasma generating apparatus using a multiple open-ended cavity resonator, and a plasma processing apparatus including the microwave plasma generating apparatus. The plasma processing apparatus includes a container for forming a process chamber, a support unit that supports a material to be processed in the process chamber, a dielectric window formed on an upper part of the process chamber, a gas supply unit that inject a process gas into the process chamber, and a microwave supply unit that includes a plurality of resonators for supplying microwaves through the dielectric window.
摘要:
Provided is an ionized physical vapor deposition (IPVD) apparatus having a helical self-resonant coil. The IPVD apparatus comprises a process chamber having a substrate holder that supports a substrate to be processed, a deposition material source that supplies a material to be deposited on the substrate into the process chamber, facing the substrate holder, a gas injection unit to inject a process gas into the process chamber, a bias power source that applies a bias potential to the substrate holder, a helical self-resonant coil that produces plasma for ionization of the deposition material in the process chamber, one end of the helical self-resonant coil being grounded and the other end being electrically open, and an RF generator to supply an RF power to the helical self-resonant coil. The use of a helical self-resonant coil enables the IPVD apparatus to ignite and operate at very low chamber pressure such as approximately 0.1 mtorr, and to produce high density plasma with high efficiency compared to a conventional IPVD apparatus. Accordingly, a high efficiency of ionization of deposition material is achieved.
摘要:
An improved plasma display panel is disclosed, the improvement comprising: a resistance layer stacked on the surface of a trigger electrode in such a manner that the surface of the resistance layer should be exposed to a discharge space filled with discharge gas, characterized in that the trigger electrode is unitized into a single piece so that the whole surface of the resistance layer should be matched with the whole surface of the trigger electrode. The device of the present invention is easy to manufacture because the dielectric which is complicated and has fastidious conditions is removed, and low cost metals as the material of the electrodes can be adopted, thus making it also possible to save the manufacturing cost.
摘要:
A plasma display panel prevents mutual reaction between the cathode electrodes and resistance layers during the manufacturing process and reduces any decreasing of resistance values. Also, equal brightness on the entire surface of the screen and a high-resolution image is attained. And finally, the manufacturing process is made simple and there is optimization of the whole structure. Connect bars are inserted between the anodes and cathode electrodes in order to make equal, at every connecting discharge cell, the resistance values, and there is a reduction of contact resistance to such an extend that it can be discounted. Trigger electrodes and cathode bus lines, which emit auxiliary discharges, are formed parallel to each other on an identical plane. Branch electrodes that extend out from the trigger electrodes are arranged so as to extend out into the discharge cells.
摘要:
A direct current type plasma display device includes an auxiliary discharge cell which has barrier walls for preventing cross-talk. First and second barrier walls are provided on front and rear plates respectively. The first and second barrier walls are in contact with each other and skewed by a predetermined width. A third barrier wall is integrally formed with the first barrier wall in a perpendicular direction to the first barrier wall. Thus, practical application is easy, and the plasma display device can effectively improve cross-talk suppression as well as the degree of contrast. This device can be applied to both monochrome and color systems and is particularly useful in large scale image reproducing apparatus requiring a high degree of image quality.
摘要:
A plasma display device includes a plurality of discharge cells each having substrates, and at least two electrodes formed on the substrates, for generating a discharge therebetween, and a shielding electrode formed between the electrodes respectively positioned in the neighboring cells, for shielding crosstalk generated between the electrodes of the neighboring cells.
摘要:
A plasma display panel (PDP) is disclosed which includes a plurality of anodes formed on an upper plate, a plurality of first sustaining electrodes and a plurality of alternating second sustaining electrodes and cathodes formed on a lower plate, and a dielectric coated on the first and second sustaining electrodes and cathodes. A method for driving the PDP includes the steps of initiating a discharge by supplying a potential higher than the discharge firing voltage to the anodes and cathodes, generating a predetermined potential between the cathodes and first sustaining electrodes to increase the voltage generated from the discharge-initiating step, supplying a voltage higher than a discharge sustaining voltage between the first and second sustaining electrodes to maintain the discharge, and supplying a narrow pulse to the cathodes for erasing the discharge.