摘要:
Provided is an ionized physical vapor deposition (IPVD) apparatus having a helical self-resonant coil. The IPVD apparatus comprises a process chamber having a substrate holder that supports a substrate to be processed, a deposition material source that supplies a material to be deposited on the substrate into the process chamber, facing the substrate holder, a gas injection unit to inject a process gas into the process chamber, a bias power source that applies a bias potential to the substrate holder, a helical self-resonant coil that produces plasma for ionization of the deposition material in the process chamber, one end of the helical self-resonant coil being grounded and the other end being electrically open, and an RF generator to supply an RF power to the helical self-resonant coil. The use of a helical self-resonant coil enables the IPVD apparatus to ignite and operate at very low chamber pressure such as approximately 0.1 mtorr, and to produce high density plasma with high efficiency compared to a conventional IPVD apparatus. Accordingly, a high efficiency of ionization of deposition material is achieved.
摘要:
A high-density plasma processing apparatus includes a processing chamber, having a susceptor for supporting an object to be processed positioned therein and a dielectric window positioned on the processing chamber to form an upper surface of the processing chamber. A reaction gas injection device injects a reaction gas into an interior of the processing chamber. An inductively coupled plasma (ICP) antenna, which is installed on a center of the dielectric window, transfers radio frequency (RF) power from an RF power supply to the interior of the processing chamber. A waveguide guides a microwave generated by a microwave generator. A circular radiative tube, which is installed on the dielectric window around the ICP antenna and is connected to the waveguide, radiates a microwave toward the interior of the processing chamber via a plurality of slots formed through a bottom wall of the radiative tube.
摘要:
A magnetron cathode and a sputtering apparatus including the same are provided. The magnetron cathode includes three or more magnet units, each of which comprises a single magnet or a plurality of magnets having the same poles facing toward the same direction, wherein one magnet unit is disposed around the outer circumference of another magnet unit and adjacent magnet units have opposite poles facing toward the same direction. Uniform magnetic field distribution is obtained. Therefore, the erosion profile of a target is wide and uniform.
摘要:
A gas injection apparatus for injecting a reactive gas into a reaction chamber of a semiconductor processing system includes an injector in contact with an inner surface of a wall of the reaction chamber. The injector has a plurality of nozzles through which the reactive gas is injected into the reaction chamber. A gas inlet penetrates the wall of the reaction chamber. A manifold is disposed between the wall of the reaction chamber and the injector, and supplies the reactive gas flowing through the gas inlet to the nozzles. Gas channels in the manifold are arranged on a plurality of levels to equalize the lengths of gas paths connecting the gas inlet to each of the plurality of nozzles. This configuration makes the flow rate of reactive gas supplied through each of the plurality of nozzles to the reaction chamber uniform.
摘要:
An inductively coupled antenna for installation on a reaction chamber of an inductively coupled plasma (ICP) processing apparatus and for connection to a radio frequency (RF) power source to induce an electric field for ionizing a reactant gas injected into the reaction chamber and for generating plasma includes a coil having a plurality of turns including an outermost turn and a plurality of inner turns, wherein a current flowing through the outermost turn is larger than a current flowing through the plurality of inner turns. The outermost turn and the inner turns are connected to the RF power supply in parallel and the inner turns are connected to each other in series. The inductively coupled antenna further includes a conductive metal tube that has a cooling path and a conductive metal strip that is electrically and thermally connected to a lower portion of the metal tube.
摘要:
An inductively coupled plasma apparatus is provided, wherein the inductively coupled plasma apparatus includes a process chamber having a wafer susceptor on which a substrate is installed, a top plasma source chamber which is installed on the process chamber, a reactor, which is installed in the top plasma source chamber, having a channel through which a gas flows, wherein the reactor supplies plasma reaction products to the process chamber, an inductor, having two ends, is installed between the top plasma source chamber and the reactor and is wound around the reactor, an opening which is positioned within a circumferential space in which the inductor is installed between the reactor and the process chamber, and a shutter operable to open and close the opening. Thus, a uniform radial distribution of radicals emanating from a plasma source can be improved.
摘要:
An inductively coupled plasma (ICP) generating apparatus includes an evacuated reaction chamber, an antenna installed at an upper portion of the reaction chamber to induce an electric field for ionizing reaction gas supplied into the reaction chamber and generating plasma, and an radio frequency (RF) power source connected to the antenna to apply radio frequency power to the antenna, wherein the antenna has a plurality of coils having different radiuses, at least one of the coils being a serpentine coil bent in a zigzag pattern. Capacitors are connected between the RF power source and a matching network and between the matching network and the antenna, in parallel with the antenna, to induce a LC resonance phenomenon. With the ICP generating apparatus having the above structure, it is possible to reduce antenna inductance, suppress capacitive coupling, and improve plasma uniformity. It is also possible to discharge and sustain plasma efficiently using the LC resonance phenomenon.