摘要:
The present application provides a method for producing organic acid, such as acetic acid, propionic acid, butyric acid, or another high-quality raw material designed for methane fermentation and obtained by converting waste paper and other forms of cellulose-based biomass to organic acid, wherein said method comprising a step for reacting rumen fluid collected from a ruminant animal with cellulose-containing waste matter. This method provides the effective use of cellulose-containing waste matter, which is a high-quality fermentation resource.
摘要:
The present application provides a method for producing organic acid, such as acetic acid, propionic acid, butyric acid, or another high-quality raw material designed for methane fermentation and obtained by converting waste paper and other forms of cellulose-based biomass to organic acid, wherein said method comprising a step for reacting rumen fluid collected from a ruminant animal with cellulose-containing waste matter. This method provides the effective use of cellulose-containing waste matter, which is a high-quality fermentation resource.
摘要:
The present invention provides a non-aqueous electrolyte battery, etc. that can reduce the manufacturing cost of the battery, meet the need for increased battery capacity, and at the same time improve various battery characteristics, such as high-rate charge-discharge capability, high-temperature cycle performance, and storage performance.A porous layer (32) is disposed between a separator and a negative electrode (13). The porous layer has a non-aqueous electrolyte permeability higher than that in TD of the separator. An excess electrolyte is contained in at least a portion of an internal space of a battery case that is other than an electrode assembly, and the excess electrolyte and at least a portion of the porous layer are in contact with each other.
摘要:
[Problem] A non-aqueous electrolyte battery is provided that shows good cycle performance and good storage performance under high temperature conditions and exhibits high reliability even with a battery configuration featuring high capacity. A method of manufacturing the battery is also provided.[Means for Solve the Problem] A non-aqueous electrolyte battery includes: a positive electrode having a positive electrode active material layer containing a positive electrode active material; a negative electrode having a negative electrode active material; a separator interposed between the positive electrode and the negative electrode; an electrode assembly including the positive electrode, the negative electrode, and the separator; and a non-aqueous electrolyte impregnated in the electrode assembly, characterized in that: the positive electrode active material contains at least cobalt or manganese; and a coating layer is formed on a surface of the positive electrode active material layer, the coating layer including filler particles and a binder.
摘要:
[Problem] A non-aqueous electrolyte battery is provided that shows good cycle performance and good storage performance under high temperature conditions and exhibits high reliability even with a battery configuration featuring high capacity. A method of manufacturing the battery is also provided.[Means for Solve the Problem] A non-aqueous electrolyte battery includes: a positive electrode having a positive electrode active material layer containing a positive electrode active material; a negative electrode having a negative electrode active material layer containing a negative electrode active material; a separator interposed between the positive electrode and the negative electrode; an electrode assembly including the positive electrode, the negative electrode, and the separator; and a non-aqueous electrolyte impregnated in the electrode assembly, characterized in that: the positive electrode active material contains at least cobalt or manganese; and a coating layer is formed on a surface of the negative electrode active material layer, the coating layer including filler particles and a binder.
摘要:
A non-aqueous electrolyte secondary battery is provided that remarkably improves battery reliability by quickly lowering the potential of the positive electrode while preventing separator shrinkage at high temperatures. A separator has on its surface a shrinkage-prevention-layer formed portion (3a), in which a layer for preventing separator shrinkage is formed, and a shrinkage-prevention-layer unformed portion (3b), in which the layer for preventing separator shrinkage is not formed. A positive electrode current collector and a negative electrode current collector respectively have a positive electrode current collector exposed portion (1b) and a negative electrode current collector exposed portion (2b). The shrinkage-prevention-layer unformed portion (3b) of the separator is disposed at a region where the current collector exposed portions (1b, 2b) face each other.
摘要:
A battery unit has a plurality of non-aqueous electrolyte secondary batteries connected in series, wherein at least two types of non-aqueous electrolyte secondary batteries (A1), (B1a) having different potentials at which lithium is released from the positive electrode active material and at which the electrical resistance in the battery increases during charge are connected in series.
摘要:
To obtain a separator for a nonaqueous electrolyte battery that has an excellent nonaqueous electrolyte permeability into an electrode and an excellent electrolyte retentivity of the electrode and achieves a large capacity, a high energy density and a good high-temperature charge characteristic. A separator 3 used for a nonaqueous electrolyte battery is formed by disposing a porous layer 2 made of inorganic fine particles and a resin binder on a porous separator substrate 1, the resin binder is made of at least one resin selected from the group consisting of polyimide resins, polyamide resins and polyamideimide resins and the molecular chain of the resin has a halogen atom content of 10% to 30% by weight, and the content of the resin binder in the porous layer is 5% by weight or more.
摘要:
A non-aqueous electrolyte secondary battery is provided that remarkably improves battery reliability by quickly lowering the potential of the positive electrode while preventing separator shrinkage at high temperatures. A separator has on its surface a shrinkage-prevention-layer formed portion (3a), in which a layer for preventing separator shrinkage is formed, and a shrinkage-prevention-layer unformed portion (3b), in which the layer for preventing separator shrinkage is not formed. A positive electrode current collector and a negative electrode current collector respectively have a positive electrode current collector exposed portion (1b) and a negative electrode current collector exposed portion (2b). The shrinkage-prevention-layer unformed portion (3b) of the separator is disposed at a region where the current collector exposed portions (1b, 2b) face each other.
摘要:
A non-aqueous electrolyte secondary battery includes a positive electrode having a positive electrode active material layer containing a positive electrode active material, a negative electrode having a negative electrode active material, a separator interposed between the positive electrode and the negative electrode, an electrode assembly comprising the positive electrode, the negative electrode, and the separator, and a non-aqueous electrolyte impregnated in the electrode assembly. The positive electrode active material contains at least cobalt or manganese. The positive electrode has an end-of-charge potential of 4.40 V versus the potential of a lithium reference electrode. The positive electrode active material layer is superficially coated with a polymer layer composed of a polymer having a partially cross-linked structure and a molecular weight of 800,000 or greater.