摘要:
A magneto-optical recording medium for MSR reproduction of a high signal quality wherein both faces of a land and a groove are used as recording tracks is disclosed. A magneto-optical recording medium wherein both of a land portion and a groove portion on a substrate are used as recording and reproduction tracks while laser light having passed through an objective lens is illuminated on the recording and reproduction tracks is configured that a ratio Wg/Wl between a track width (Wg) of the groove portion and a track width (Wl) of the land portion is equal to or higher than 0.65 but equal to or lower than 0.85, and, where the wavelength of the laser light is represented by λ, the numerical aperture of the objective lens by NA and the refractive index of the substrate by n, the groove distance Gp is equal to or greater than 1.0×λ/NA but equal to or smaller than 1.2×λ/NA and besides the depth D of the groove is equal to or greater than λ/11 n but equal to or smaller than λ/8 n.
摘要:
An optical information recording medium, which includes both of a land surface and a groove surface as a recording track and presents high signal quality. The optical information recording medium includes both a land and a groove as the recording track on a substrate, in which a laser light is irradiated from a reverse side of the substrate to thereby carry out a recording and a reproduction, and an inclination angle of a groove side is 25° or more and 40° or less, and both of arithmetic average roughness (Ra) on the land surface and the groove surface are assumed to be 0.2 to 0.7 nm.
摘要:
An optical information recording medium, which includes both of a land surface and a groove surface as a recording track and presents high signal quality. The optical information recording medium includes both a land and a groove as the recording track on a substrate, in which a laser light is irradiated from a reverse side of the substrate to thereby carry out a recording and a reproduction, and an inclination angle of a groove side is 25° or more and 40° or less, and both of arithmetic average roughness (Ra) on the land surface and the groove surface are assumed to be 0.2 to 0.7 nm.
摘要:
An optical information recording medium, which includes both of a land surface and a groove surface as a recording track and presents high signal quality. The optical information recording medium includes both a land and a groove as the recording track on a substrate, in which a laser light is irradiated from a reverse side of the substrate to thereby carry out a recording and a reproduction, and an inclination angle of a groove side is 25° or more and 40° or less, and both of arithmetic average roughness (Ra) on the land surface and the groove surface are assumed to be 0.2 to 0.7 nm.
摘要:
An optical recording medium has spirally or concentrically formed tracks and capable of an optical recording. The optical recording medium includes a data recording and reproducing area divided into a plurality of zones in the radial direction. One zone is divided into a plurality of sectors respectively having an address area including pits having address information and a data are in which data is only present in grooves. The number of sectors forming each zone is different. An optical disc is formed so that an average reflectance Iadd of the address part and an average reflectance Idata of the data part satisfy a relation expressed by 0.7≦(Iadd/Idata)≦1.3 or 0.8≦(Iadd/Idata)≦1.2.
摘要:
When carrying out magnetization, annealing, and initialization of a recording film by applying a laser beam to the recording film while rotating an optical recording medium 10 by a motor 11, light of a strong visible-light lamp 15 is projected as parallel light to a reflecting mirror 14 via a lens 16 so as to apply light reflected by the reflecting mirror 14 to an area wider than a spot of the laser beam on the medium 10 for heating. At that time, a control unit 18 controls an intensity of the strong visible-light lamp 15 to raise a temperature of the medium 10 to a temperature of 80° C. or higher and a softening point of a substrate or lower, for example.
摘要:
When carrying out magnetization, annealing, and initialization of a recording film by applying a laser beam to the recording film while rotating an optical recording medium 10 by a motor 11, light of a strong visible-light lamp 15 is projected as parallel light to a reflecting mirror 14 via a lens 16 so as to apply light reflected by the reflecting mirror 14 to an area wider than a spot of the laser beam on the medium 10 for heating. At that time, a control unit 18 controls an intensity of the strong visible-light lamp 15 to raise a temperature of the medium 10 to a temperature of 80° C. or higher and a softening point of a substrate or lower, for example.
摘要:
When carrying out magnetization, annealing, and initialization of a recording film by applying a laser beam to the recording film while rotating an optical recording medium 10 by a motor 11, light of a strong visible-light lamp 15 is projected as parallel light to a reflecting mirror 14 via a lens 16 so as to apply light reflected by the reflecting mirror 14 to an area wider than a spot of the laser beam on the medium 10 for heating. At that time, a control unit 18 controls an intensity of the strong visible-light lamp 15 to raise a temperature of the medium 10 to a temperature of 80° C. or higher and a softening point of a substrate or lower, for example.
摘要:
An electromechanical transducer element includes a first electrode on a substrate, an electromechanical transducer film on the first electrode, and a second electrode on the electromechanical transducer film. The electromechanical transducer film includes a thin line pattern. The thin line pattern includes a plurality of thin lines that are spaced away from each other.
摘要:
An electromechanical transducer element includes a first electrode; an electromechanical transducer film stacked on one surface of the first electrode; a second electrode stacked on the electromechanical transducer film; and wiring formed on the second electrode. In an at least one cross section, each of a boundary, on a second electrode side, of the electromechanical transducer film and a boundary, on a side opposite to the electromechanical transducer film, of the second electrode is a curved shape protruding away from the first electrode. In the at least one cross section, each of a film thickness of the electromechanical transducer film and a film thickness of the second electrode becomes thinner toward end portions from a maximum height portion.