Hybrid interior-point alternating directions algorithm for support vector machines and feature selection
    1.
    发明授权
    Hybrid interior-point alternating directions algorithm for support vector machines and feature selection 有权
    用于支持向量机和特征选择的混合内点交替方向算法

    公开(公告)号:US08719194B2

    公开(公告)日:2014-05-06

    申请号:US13611528

    申请日:2012-09-12

    IPC分类号: G06N99/00

    CPC分类号: G06N99/005

    摘要: A method for training a classifier for selecting features in sparse data sets with high feature dimensionality includes providing a set of data items x and labels y, minimizing a functional of the data items x and associated labels y L ⁡ ( w , b , a , c , γ 1 , γ 2 ) := 1 N ⁢ ∑ i = 1 N ⁢ a i + λ 1 ⁢  c  1 + λ 2 2 ⁢  w  2 2 + γ 1 T ⁡ ( e - Y ⁡ ( Xw + be ) - a ) + γ 2 T ⁡ ( w - c ) + μ 1 2 ⁢  e - Y ⁡ ( Xw + be ) - a  2 2 + μ 2 2 ⁢  w - c  2 2 to solve for hyperplane w and offset b of a classifier by successively iteratively approximating w and b, auxiliary variables a and c, and multiplier vectors γ1 and γ2, wherein λ1, λ2, μ1, and μ2 are predetermined constants, e is a unit vector, and X and Y are respective matrix representations of the data items x and labels y; providing non-zero elements of the hyperplane vector w and corresponding components of X and Y as arguments to an interior point method solver to solve for hyperplane vector w and offset b, wherein w and b define a classifier than can associate each data item x with the correct label y.

    摘要翻译: 用于训练用于在具有高特征维度的稀疏数据集中选择特征的分类器的方法包括提供一组数据项x和标号y,使数据项x和相关标签y L⁡(w,b,a, c,γ1,γ2):= 1NΣi = 1 N ai +λ1c1 +λ2 2w2 2 +γ1 T⁡(e-Y⁡(Xw + be)-a)+γ2 T⁡(w-c)+μ1 2e -Y⁡(Xw + be)-a22 +μ2 2w -c2 2求解 对于分类器的超平面w和偏移量b,通过连续迭代地近似w和b,辅助变量a和c以及乘数向量γ1和γ2,其中λ1,λ2,μ1和μ2是预定常数,e是单位矢量, X和Y是数据项x和标签y的相应矩阵表示; 提供超平面矢量w的非零元素和X和Y的对应分量作为内点方法求解器的参数来求解超平面矢量w和偏移b,其中w和b定义分类器,可以将每个数据项x与 正确的标签y。

    HYBRID INTERIOR-POINT ALTERNATING DIRECTIONS ALGORITHM FOR SUPPORT VECTOR MACHINES AND FEATURE SELECTION
    2.
    发明申请
    HYBRID INTERIOR-POINT ALTERNATING DIRECTIONS ALGORITHM FOR SUPPORT VECTOR MACHINES AND FEATURE SELECTION 有权
    用于支持向量机的混合内点交替方向算法和特征选择

    公开(公告)号:US20130073489A1

    公开(公告)日:2013-03-21

    申请号:US13611528

    申请日:2012-09-12

    IPC分类号: G06F15/18

    CPC分类号: G06N99/005

    摘要: A method for training a classifier for selecting features in sparse data sets with high feature dimensionality includes providing a set of data items x and labels y, minimizing a functional of the data items x and associated labels y L  ( w , b , a , c , γ 1 , γ 2 ) := 1 N  ∑ i = 1 N  a i + λ 1   c  1 + λ 2 2   w  2 2 + γ 1 T  ( e - Y  ( Xw + be ) - a ) + γ 2 T  ( w - c ) + μ 1 2   e - Y  ( Xw + be ) - a  2 2 + μ 2 2   w - c  2 2 to solve for hyperplane w and offset b of a classifier by successively iteratively approximating w and b, auxiliary variables a and c, and multiplier vectors γ1 and γ2, wherein λ1, λ2, μ1, and μ2 are predetermined constants, e is a unit vector, and X and Y are respective matrix representations of the data items x and labels y; providing non-zero elements of the hyperplane vector w and corresponding components of X and Y as arguments to an interior point method solver to solve for hyperplane vector w and offset b, wherein w and b define a classifier than can associate each data item x with the correct label y.

    摘要翻译: 用于训练用于在具有高特征维度的稀疏数据集中选择特征的分类器的方法包括提供一组数据项x和标号y,使数据项x和相关标签y L(w,b,a, c,γ1,γ2):= 1NΣΣi = 1 N a a +λ11 +λ2 22 2 +γ1 T(e-Y + be) - a)+γ2 T(w-c)+μ1 2e - Y(Xw + be) - a2 2 +μ2 22 2求解 对于分类器的超平面w和偏移量b,通过连续迭代地近似w和b,辅助变量a和c以及乘数向量γ1和γ2,其中λ1,λ2,μ1和μ2是预定常数,e是单位矢量, X和Y是数据项x和标签y的相应矩阵表示; 提供超平面矢量w的非零元素和X和Y的对应分量作为内点方法求解器的参数来求解超平面矢量w和偏移b,其中w和b定义分类器,可以将每个数据项x与 正确的标签y。

    THERMO-ECONOMIC MODELING AND OPTIMIZATION OF A COMBINED COOLING, HEATING, AND POWER PLANT
    3.
    发明申请
    THERMO-ECONOMIC MODELING AND OPTIMIZATION OF A COMBINED COOLING, HEATING, AND POWER PLANT 有权
    组合式冷却,加热和发电厂的热经济建模与优化

    公开(公告)号:US20140229012A1

    公开(公告)日:2014-08-14

    申请号:US14236500

    申请日:2012-08-17

    IPC分类号: G05B13/04

    CPC分类号: G05B13/04 G05B13/042

    摘要: A method to manage operating costs of a combined cooling heating and power (CCHP) plant that includes converting complex models of underlying components of the plant into simplified models (S101), performing an optimization that uses the simplified models as constraints of the optimization to output at least one decision variable (S102), and adjusting controls of the plant based on one or more of the output decision variables (S103).

    摘要翻译: 一种管理组合制冷加热和电力(CCHP)工厂的运行成本的方法,其包括将工厂的基础部件的复杂模型转换为简化模型(S101),执行使用简化模型作为优化约束的优化 至少一个决策变量(S102),并且基于一个或多个输出判定变量来调整工厂的控制(S103)。

    INTERIOR POINT METHOD FOR REFORMULATED OPTIMAL POWER FLOW MODEL
    5.
    发明申请
    INTERIOR POINT METHOD FOR REFORMULATED OPTIMAL POWER FLOW MODEL 有权
    改进的最优动力流量模型的内部点方法

    公开(公告)号:US20130238148A1

    公开(公告)日:2013-09-12

    申请号:US13413086

    申请日:2012-03-06

    IPC分类号: G05F5/00

    摘要: A method for approximating an optimal power flow of a smart electric power grid includes providing a cost function that models a smart electric power grid having buses connected by branches, deriving a set of linear equations that minimize the cost function subject to constraints from an expression of an extremum of the cost function with respect to all arguments, reducing a dimension of the linear equations by solving for a subset of the linear equations, re-organizing the reduced dimension linear equations into primal and dual parts, and decomposing the re-organized reduced dimensional linear equations into two systems of block matrix equations which can be solved by a series of back substitutions. A solution of the two systems of block matrix equations yields conditions for a lowest cost per kilowatthour delivered through the smart electric power grid.

    摘要翻译: 一种用于近似智能电网的最佳功率流的方法包括提供一种成本函数,其对具有通过分支连接的总线的智能电力网进行建模,导出一组线性方程,其中所述线性方程使得成本函数最小化, 关于所有参数的成本函数的极值,通过求解线性方程的子集来减少线性方程的维度,将缩减维线性方程重新组织成原始和双重部分,并且分解重新组织的减少 二维线性方程组成两个系统的矩阵方程组,可以通过一系列的后置换算来求解。 块矩阵方程的两个系统的解决方案产生通过智能电力网输送的每千瓦最低成本的条件。

    Interior point method for reformulated optimal power flow model
    6.
    发明授权
    Interior point method for reformulated optimal power flow model 有权
    重构最优潮流模型的内点法

    公开(公告)号:US08977524B2

    公开(公告)日:2015-03-10

    申请号:US13413086

    申请日:2012-03-06

    摘要: A method for approximating an optimal power flow of a smart electric power grid includes providing a cost function that models a smart electric power grid having buses connected by branches, deriving a set of linear equations that minimize the cost function subject to constraints from an expression of an extremum of the cost function with respect to all arguments, reducing a dimension of the linear equations by solving for a subset of the linear equations, re-organizing the reduced dimension linear equations into primal and dual parts, and decomposing the re-organized reduced dimensional linear equations into two systems of block matrix equations which can be solved by a series of back substitutions. A solution of the two systems of block matrix equations yields conditions for a lowest cost per kilowatthour delivered through the smart electric power grid.

    摘要翻译: 一种用于近似智能电网的最佳功率流的方法包括提供一种成本函数,其对具有通过分支连接的总线的智能电力网进行建模,导出一组线性方程,其中所述线性方程使得成本函数最小化, 关于所有参数的成本函数的极值,通过求解线性方程的子集来减少线性方程的维度,将缩减维线性方程重新组织成原始和双重部分,并且分解重新组织的减少 二维线性方程组成两个系统的矩阵方程组,可以通过一系列的后置换算来求解。 块矩阵方程的两个系统的解决方案产生通过智能电力网输送的每千瓦最低成本的条件。

    Maintenance event planning and scheduling for gas turbines
    7.
    发明授权
    Maintenance event planning and scheduling for gas turbines 有权
    燃气轮机的维护事件规划和调度

    公开(公告)号:US07930198B2

    公开(公告)日:2011-04-19

    申请号:US11232774

    申请日:2005-09-22

    IPC分类号: G06Q10/00

    CPC分类号: G06Q10/06 G06Q10/0631

    摘要: A method for scheduling a project such as the inspection and maintenance of a gas turbine utilizes a branch and bound technique for arriving at a solution. The branch and bound technique is improved by using an all-pair longest path algorithm in preprocessing to tighten the set of possible start times of the tasks. That set is further tightened by considering two-forbidden-task pairs; i.e., pairs of tasks that cannot execute at the same time due to conflicting resource needs. A hard lower bound of a branch is determined by using all-pair longest path update and two-forbidden-task pair update, reducing the need to recalculate.

    摘要翻译: 用于调度诸如燃气轮机的检查和维护的项目的方法利用分支和绑定技术来达成解决方案。 通过在预处理中使用全对最长路径算法来加紧任务的可能开始时间集,改进了分支和绑定技术。 考虑到两个禁止任务对,进一步加强了这一套; 即由于资源需求冲突而无法同时执行的任务对。 通过使用全对最长路径更新和双重禁止任务对更新来确定分支的硬下限,从而减少了重新计算的需要。

    Method for querying XML documents using a weighted navigational index
    8.
    发明授权
    Method for querying XML documents using a weighted navigational index 有权
    使用加权导航索引查询XML文档的方法

    公开(公告)号:US07370061B2

    公开(公告)日:2008-05-06

    申请号:US11204061

    申请日:2005-08-15

    IPC分类号: G06F17/00

    摘要: A technique for optimizing the archival and management of data stored as XML documents is capable of handling mixed data including highly structured data and unstructured data. The technique maps the structured data to a relational database while storing the unstructured data in its native XML format. The data is updated using a rules database that maps updating rules against attributes and classes of elements within the documents. A document checking/validation engine performs the updates based on rule verification. A search engine searches the documents using both a path index table and a weighted content index.

    摘要翻译: 用于优化存储为XML文档的数据的归档和管理的技术能够处理包括高度结构化数据和非结构化数据的混合数据。 该技术将结构化数据映射到关系数据库,同时以非原生XML格式存储非结构化数据。 使用规则数据库更新数据,该数据库将更新规则与文档中元素的属性和类别进行映射。 文档检查/验证引擎基于规则验证来执行更新。 搜索引擎使用路径索引表和加权内容索引来搜索文档。

    System and method for automatic molecular diagnosis of ALS based on boosting classification
    9.
    发明授权
    System and method for automatic molecular diagnosis of ALS based on boosting classification 失效
    基于增强分类的ALS自动分子诊断系统和方法

    公开(公告)号:US07356521B2

    公开(公告)日:2008-04-08

    申请号:US11330535

    申请日:2006-01-12

    IPC分类号: G06N5/00

    摘要: A method for diagnosing Amyotrophic lateral sclerosis includes providing surface-enhanced laser desorption/ionisation mass spectrometric (SELDI-MS) data of a plurality of proteins, said data obtained from a patient and comprising a plurality of peak values, and analysing said peak values with an alternating decision tree comprising a set of tests of said data peaks values and associated prediction values, wherein said data is predictive of depression if a sum of the prediction values of said tree is greater than 1.0.

    摘要翻译: 用于诊断肌萎缩性侧索硬化症的方法包括提供多个蛋白质的表面增强激光解吸/电离质谱(SELDI-MS)数据,所述数据从患者获得并包括多个峰值,并且分析所述峰值与 交替决策树,其包括所述数据峰值和相关联的预测值的一组测试,其中如果所述树的预测值之和大于1.0,则所述数据预示着抑制。