摘要:
Multicast traffic is expected to increase in packet networks, and therefore in switches and routers, by including broadcast and multimedia-on-demand services. Combined input-crosspoint buffered (CICB) switches can provide high performance under uniform multicast traffic. However this is often at the expense of N2 crosspoint buffers. An output-based shared-memory crosspoint-buffered (O-SMCB) packet switch is used where the crosspoint buffers are shared by two outputs and use no speedup. An embodiment of the proposed switch provides high performance under admissible uniform and non-uniform multicast traffic models while using 50% of the memory used in CICB switches that has dedicated buffers. Furthermore, the O-SMCB switch provides higher throughput than an existing SMCB switch where the buffers are shared by inputs.
摘要:
A Clos-network packet switching system may include input modules coupled to a virtual output queue, central modules coupled to the input modules, and output modules coupled to the central modules, each output module having a plurality of cross-point buffers for storing a packet and one or more output ports for outputting the packet.
摘要:
Examples are disclosed for forwarding data partitioned into one or more cells through at least a portion of a three-stage memory-memory-memory (MMM) input-queued Clos-network (IQC) packet switch. In some examples, each module of the three-stage MMM IQC packet switch includes a virtual queue and a manager that are configured in cooperation with one another to forward cells through at least a portion of the switch. The cells may have been partitioned and stored at an input port for the switch and destined for an output port for the switch.
摘要:
A Clos-network packet switching system may include input modules coupled to a virtual output queue, central modules coupled to the input modules, and output modules coupled to the central modules, each output module having a plurality of cross-point buffers for storing a packet and one or more output ports for outputting the packet.
摘要:
Examples are disclosed for forwarding cells of partitioned data through a three-stage memory-memory-memory (MMM) input-queued Clos-network (IQC) packet switch. In some examples, each module of the three-stage MMM IQC packet switch includes a virtual queue and a manager that are configured in cooperation with one another to forward a cell from among cells of partitioned data through at least a portion of the switch. The cells of partitioned data may have been partitioned and stored at an input port for the switch and have a destination of an output port for the switch.
摘要:
Examples are disclosed for forwarding data partitioned into one or more cells through at least a portion of a three-stage memory-memory-memory (MMM) input-queued Clos-network (IQC) packet switch. In some examples, each module of the three-stage MMM IQC packet switch includes a virtual queue and a manager that are configured in cooperation with one another to forward cells through at least a portion of the switch. The cells may have been partitioned and stored at an input port for the switch and destined for an output port for the switch.
摘要:
Multicast traffic is expected to increase in packet networks, and therefore in switches and routers, by including broadcast and multimedia-on-demand services. Combined input-crosspoint buffered (CICB) switches can provide high performance under uniform multicast traffic. However this is often at the expense of N2 crosspoint buffers. An output-based shared-memory crosspoint-buffered (O-SMCB) packet switch is used where the crosspoint buffers are shared by two outputs and use no speedup. An embodiment of the proposed switch provides high performance under admissible uniform and non-uniform multicast traffic models while using 50% of the memory used in CICB switches that has dedicated buffers. Furthermore, the O-SMCB switch provides higher throughput than an existing SMCB switch where the buffers are shared by inputs.
摘要:
A pipeline-based matching scheduling approach for input-buffered switches relaxes the timing constraint for arbitration with matching schemes, such as CRRD and CMSD. In the new approach, arbitration may operate in a pipelined manner. Each sub-scheduler is allowed to take more than one time slot for its matching. Every time slot, one of them provides a matching result(s). The sub-scheduler can use a matching scheme such as CRRD and CMSD.
摘要:
A Pipelined-based Maximal-sized Matching (PMM) scheduling approach for input-buffered switches relaxes the timing constraint for arbitration with a maximal matching scheme. In the PMM approach, arbitration may operate in a pipelined manner. Each subscheduler is allowed to take more than one time slot for its matching. Every time slot, one of them provides the matching result. The subscheduler can adopt a pre-existing efficient maximal matching algorithm such as iSLIP and DRRM. PMM maximizes the efficiency of the adopted arbitration scheme by allowing sufficient time for a number of iterations. PMM preserves 100% throughput under uniform traffic and fairness for best-effort traffic.
摘要:
Methods and apparatus for packetized energy distribution are provided. A data and power delivery network, called a digital grid, is provided to facilitate delivery of power upon request. Energy bits (quanta) serve as a means to deliver energy as well as coding. Voltage pulses of varying time scales are used for coding and current levels help to accurately meet customer's demand. Energy is sent as packets (a combination of energy bits), and specific energy packets are addressed to specific customers permitting accurate monitoring and distribution of electrical energy.