摘要:
One embodiment provides a system for using a database to quickly identify a manufacturing problem area in a layout. During operation, the system receives a first check-figure which identifies a first area in a first layout, wherein the first area is associated with a first feature. Next, the system determines a first sample using the first check-figure, wherein the first sample represents the first layout's geometry within a first ambit of the first check-figure, wherein the first sample's geometry is expected to affect the shape of the first feature. The system then performs a model-based simulation using the first sample to obtain a first simulation-result which indicates whether the first feature is expected to have manufacturing problems. Next, the system stores the first simulation-result in a database which is used to quickly determine whether a second feature is expected to have manufacturing problems.
摘要:
One embodiment provides a system for using a database to quickly identify a manufacturing problem area in a layout. During operation, the system receives a first check-figure which identifies a first area in a first layout, wherein the first area is associated with a first feature. Next, the system determines a first sample using the first check-figure, wherein the first sample represents the first layout's geometry within a first ambit of the first check-figure, wherein the first sample's geometry is expected to affect the shape of the first feature. The system then performs a model-based simulation using the first sample to obtain a first simulation-result which indicates whether the first feature is expected to have manufacturing problems. Next, the system stores the first simulation-result in a database which is used to quickly determine whether a second feature is expected to have manufacturing problems.
摘要:
One embodiment provides a system for using a database to quickly identify a manufacturing problem area in a layout. During operation, the system receives a first check-figure which identifies a first area in a first layout, wherein the first area is associated with a first feature. Next, the system determines a first sample using the first check-figure, wherein the first sample represents the first layout's geometry within a first ambit of the first check-figure, wherein the first sample's geometry is expected to affect the shape of the first feature. The system then performs a model-based simulation using the first sample to obtain a first simulation-result which indicates whether the first feature is expected to have manufacturing problems. Next, the system stores the first simulation-result in a database which is used to quickly determine whether a second feature is expected to have manufacturing problems.
摘要:
One embodiment of the present invention provides techniques and systems for determining modeling parameters for a photolithography process. During operation, the system can receive a layout. Next, the system can determine an iso-focal pattern in the layout. The system can then determine multiple aerial-image-intensity values in proximity to the iso-focal pattern by convolving the layout with multiple optical models, wherein the multiple optical models model the photolithography process's optical system under different focus conditions. Next, the system can determine a location in proximity to the iso-focal pattern where the aerial-image-intensity values are substantially insensitive to focus variations. The system can then use the location and the associated aerial-image-intensity values to determine an optical threshold and a resist bias. The optical threshold and the resist bias can then be used for modeling the photolithography process.
摘要:
One embodiment provides a system for determining a process model for a photolithography process. The photolithography process can use multiple exposure-and-development steps to create features on a wafer. When the photolithography process exposes the wafer to a layout, the wafer can include topography variations which were caused by previous exposure-and-development steps. The process model can be used to predict patterns that are created on the wafer when the wafer is exposed to a second layout, wherein the wafer includes topography variations that were caused by resist features that were created when the wafer was exposed to a first layout. The process model can include a first term and a second term, wherein the first term is convolved with a sum of the first layout and the second layout, and wherein the second term is convolved with the second layout.
摘要:
One embodiment provides a system that can enable a designer to determine the effects of subsequent processes at design time. During operation, the system may receive a test layout and an optical model that models an optical system, but which does not model the effects of subsequent processes, such as optical proximity correction (OPC). The system may generate a first dataset using the test layout and the optical model. Next, the system may apply OPC to the test layout, and generate a second dataset using the corrected test layout and the optical model. The system may then use the first dataset and the second dataset to adjust the optical model to obtain a second optical model that models the effects of subsequent processes.
摘要:
One embodiment of the present invention provides a system that determines whether a sub-resolution assist feature will print. During operation, the system receives a layout which contains a sub-resolution assist feature. Next, the system determines whether the sub-resolution assist feature will print using a process model and the layout. The process model is determined using first process data and second process data. The first process data is obtained using a first layout which is exposed using a first exposure level. The second process data is obtained using a second layout which is exposed using a second exposure level, which is different from the first exposure level. The second exposure level causes the sub-resolution assist features within the second layout to print.
摘要:
One embodiment of the present invention determines the effect of placing an assist feature at a location in a layout. During operation, the system receives a first value which was pre-computed by convolving a model with a layout at an evaluation point, wherein the model models semiconductor manufacturing processes. Next, the system determines a second value by convolving the model with an assist feature, which is assumed to be located at a first location which is in proximity to the evaluation point. The system then determines the effect of placing an assist feature using the first value and the second value. An embodiment of the present invention can be used to determine a substantially optimal location for placing an assist feature in a layout.
摘要:
One embodiment of the present invention provides a system that identifies an area in a mask layout which is likely to cause manufacturing problems due to a missing or an improperly placed assist feature. During operation, the system receives an uncorrected or corrected mask layout. The system then dissects the mask layout into segments. Next, the system identifies a problem area associated with a segment using a process-sensitivity model which can be represented by a multidimensional function that captures process-sensitivity information. Note that identifying the problem area allows a new assist feature to be added or an existing assist feature to be adjusted, thereby improving the wafer manufacturability. Moreover, using the process-sensitivity model reduces the computational time required to identify the problem area.
摘要:
An embodiment provides systems and techniques for determining a process model. During operation, the system may receive a first optical model which models a first optical system of a photolithography process. Next, the system may use the first optical model to determine a second optical model that models a second latent image that is formed by the first optical system at a second distance. The system may also use the first optical model to determine a third optical model that models a third latent image that is formed by the first optical system at a third distance. Next, the system may receive process data which is obtained by subjecting a test layout to the photolithography process. The system may then determine a process model using the first optical model, the second optical model, the third optical model, the test layout, and the process data.