Systems and methods for managing skin within a subterranean wellbore

    公开(公告)号:US11808123B2

    公开(公告)日:2023-11-07

    申请号:US17627104

    申请日:2020-07-09

    CPC classification number: E21B43/14

    Abstract: Systems and methods are disclosed for managing skin in a subterranean wellbore. In an embodiment, the method includes oscillating a drawdown pressure of the subterranean wellbore in a predetermined pattern that comprises a plurality of alternating drawdown pressure increases and drawdown pressure decreases. The drawdown pressure increases of the predetermined pattern comprise increasing the drawdown pressure at a first rate, and the drawdown pressure decreases of the predetermined pattern comprise decreasing the drawdown pressure at a second rate that is different from the first rate.

    Quantitative method for determining the organic acid content of crude oil

    公开(公告)号:US11493488B2

    公开(公告)日:2022-11-08

    申请号:US16638129

    申请日:2018-08-16

    Abstract: A method for analysing a crude oil to determine the amount of organic acid compounds contained in the crude oil includes extracting the organic acid compounds from a sample of crude oil to form an extract and determining the amount of the extracted organic acids In addition, the method includes dissolving the extract in a polar solvent to form a solution of the extracted organic acid compounds Further, the method includes introducing a sample of the solution of the extracted organic acid to an apparatus including a reversed phase liquid chromatography (LC) column and a mass spectrometer (MS) arranged in series. The reversed phase LC column contains a hydrophobic sorbent and the mobile phase for the LC column includes a polar organic solvent. Still further, the method includes separating the organic acid compounds in the LC column of the LC-MS apparatus and continuously passing the separated organic acid compounds from the LC column to the MS of the LC-MS apparatus to ionize the organic acid compounds and to obtain a chromatogram with mass spectral data over time for the ionized organic acid compounds. Moreover, the method includes determining the area(s) under the peak(s) in an extracted ion chromatogram derived from the mass spectral data assigned to one or more organic acid compounds. The method also includes determining the amount of the organic acid compound(s) in the sample by comparing the area under the peak(s) assigned to the organic acid compound(s) with the area under a peak in an extracted ion chromatogram assigned to a specific amount of a standard organic acid compound. In addition, the method includes extrapolating from the amount of the organic acid compound(s) in the sample to provide the total amount of the organic acid compound(s) in the extract.

    Oil recovery method
    5.
    发明授权

    公开(公告)号:US11002122B1

    公开(公告)日:2021-05-11

    申请号:US16471458

    申请日:2017-12-08

    Abstract: A method for recovering crude oil from a reservoir including at least one layer of reservoir rock having crude oil and a formation water within the pore space thereof includes injecting into the layer(s) of reservoir rock from an injection well, alternating slugs of an aqueous displacement fluid comprising a concentrated solution of a water-soluble additive in an aqueous solvent and of an aqueous spacer fluid. The number of injected slugs of aqueous displacement fluid, n, is in the range of 15 to 1000 per swept pore volume, PVR, of the layer(s) of reservoir rock. The injected pore volume of each individual slug, PVSlug-i, of aqueous displacement fluid is in the range of 10−12 to 10−2 of the swept pore volume, PVR, of the layer(s) of reservoir rock. The total injected pore volume of the slugs of aqueous displacement fluid is in the range of 10−8 to 10−1 of the swept pore volume, PVR, of the layer(s) of reservoir rock. The injected pore volume of each individual slug of aqueous spacer fluid, PVSpacer-i, is in the range of 0.0001 to 0.1000 of the swept pore volume, PVR, of the layer(s) of reservoir rock. The total injected pore volume of the slugs of aqueous spacer fluid is in the range of 0.9000000 to 0.9999999 of the swept pore volume, PVR, of the layer(s) of reservoir rock. The reservoir rock has a dispersivity, α, in the range of 1 to 30% of the interwell distance between the injection well and production well. The amount of additive delivered to the layer(s) of reservoir rock by the plurality of slugs of aqueous displacement fluid is equal to or greater than a predetermined minimum additive quantity (MAQ).

    Oil Recovery Method
    6.
    发明申请

    公开(公告)号:US20210131243A1

    公开(公告)日:2021-05-06

    申请号:US16471458

    申请日:2017-12-08

    Abstract: A method for recovering crude oil from a reservoir including at least one layer of reservoir rock having crude oil and a formation water within the pore space thereof includes injecting into the layer(s) of reservoir rock from an injection well, alternating slugs of an aqueous displacement fluid comprising a concentrated solution of a water-soluble additive in an aqueous solvent and of an aqueous spacer fluid. The number of injected slugs of aqueous displacement fluid, n, is in the range of 15 to 1000 per swept pore volume, PVR, of the layer(s) of reservoir rock. The injected pore volume of each individual slug, PVSlug-i, of aqueous displacement fluid is in the range of 10−12 to 10−2 of the swept pore volume, PVR, of the layer(s) of reservoir rock. The total injected pore volume of the slugs of aqueous displacement fluid is in the range of 10−8 to 10−1 of the swept pore volume, PVR, of the layer(s) of reservoir rock. The injected pore volume of each individual slug of aqueous spacer fluid, PVSpacer-i, is in the range of 0.0001 to 0.1000 of the swept pore volume, PVR, of the layer(s) of reservoir rock. The total injected pore volume of the slugs of aqueous spacer fluid is in the range of 0.9000000 to 0.9999999 of the swept pore volume, PVR, of the layer(s) of reservoir rock. The reservoir rock has a dispersivity, α, in the range of 1 to 30% of the interwell distance between the injection well and production well. The amount of additive delivered to the layer(s) of reservoir rock by the plurality of slugs of aqueous displacement fluid is equal to or greater than a predetermined minimum additive quantity (MAQ).

    Well and overburden monitoring using distributed acoustic sensors

    公开(公告)号:US10975687B2

    公开(公告)日:2021-04-13

    申请号:US16566711

    申请日:2019-09-10

    Abstract: A method of detecting a leak event within a wellbore can include inducing a pressure differential within a wellbore comprising a fluid, obtaining a sample data set representative of the acoustic signal across a frequency spectrum while inducing the pressure differential, determining a plurality of frequency domain features of the sample data set, determining a presence of a leak event at one or more depths within the wellbore based on determining that the plurality of frequency domain features match a leak event signature, correlating the leak event with the induced pressure differential, and determining a presence and location of a leak within the wellbore based on the presence of the leak event and the correlating of the leak event with the induced pressure differential.

    Seismic survey method
    8.
    发明授权

    公开(公告)号:US10928532B2

    公开(公告)日:2021-02-23

    申请号:US15558560

    申请日:2016-03-23

    Abstract: A method includes receiving data indicative of outputs of first and second seismic sensors. The outputs include components corresponding to the detection by the first and second seismic sensors of first and second seismic signals. In addition, the method includes identifying, relative to a first clock in the first seismic sensor, a first time associated with a time of arrival of the first seismic signal at the first seismic sensor, and a second time associated with a time of arrival of the second seismic signal at the first seismic sensor. Further, the method includes identifying, relative to a second clock in the second seismic sensor, a third time associated with a time of arrival of the first seismic signal at the second seismic sensor, and a fourth time associated with a time of arrival of the second seismic signal at the second seismic sensor. Still further, the method includes determining an offset of the first clock relative to the second clock using the first, second, third and fourth times.

    Detecting Events Using Acoustic Frequency Domain Features

    公开(公告)号:US20200256834A1

    公开(公告)日:2020-08-13

    申请号:US16755211

    申请日:2018-10-10

    Abstract: A system for processing acoustic data to identify an event includes a receiver unit including a processor and a memory. The receiver unit is configured to receive a signal from a sensor disposed along a sensor path or across a sensor area. A processing application is stored in the memory. The processing application, when executed on the processor, configures the processor to: receive the signal from the sensor, where the signal includes an indication of an acoustic signal received at one or more lengths along the sensor path or across a portion of the sensor area and the signal is indicative of the acoustic signal across a frequency spectrum; determine a plurality of frequency domain features of the signal across the frequency spectrum; and generate an output comprising the plurality of frequency domain features.

Patent Agency Ranking