Abstract:
A backlight driver includes current sources that are connected between LED strings and a number of bias voltages. There can be any number of different bias voltages, each at a ground potential or higher voltage. The bias voltage is selected for a particular LED string in order to reduce a current drop across the current source. This reduces the power consumption of the current source and LED string. Heat dissipation is also reduced.
Abstract:
An LED lighting system includes a luminescent unit driven by a rectified AC voltage, a dimmer switch configured to adjusting a duty cycle of a system current, and a bleeder circuit. The bleeder circuit includes a first current source, a second current source, a third current source, a current-sensing element for providing a first feedback voltage associated with the system current, a capacitor, and a control unit. The control unit is configured to activate the first current source and deactivate the second current source for charging the capacitor when the system current exceeds a predetermined threshold, deactivate the first current source and activate the second current source for discharging the capacitor when the system current does not exceed the predetermined threshold, and deactivate the third current source to stop supplying the bleeder current according to a second feedback voltage established across the capacitor.
Abstract:
A variable Vcom level generator circuit generates a variable Vcom voltage level. A variable Vcom voltage can be used for variable refresh rate display technology to prevent flicker on a display panel. The Vcom level can be changed based on the vertical frequency being used or can be changed based on external control signals.
Abstract:
An adaptive Vcom level generator circuit generates a variable Vcom voltage level. A variable Vcom voltage can be used for variable refresh rate display technology to prevent flicker on a display panel. The Vcom level can be changed based on the vertical frequency being used or can be changed based on external control signals.
Abstract:
One or more resistors or resistances are integrated in a 7-bit DVR or PVCOM integrated circuit. A 7-bit DVR or PVCOM integrated circuit includes a 7-bit DAC. The integrated resistors or resistances (R1, R2, or RSET, or any combination) reduces the number of external components, reduces the number of pins, and increases the accuracy of the DVR or PVCOM circuit. The least significant bit (LSB) of the DAC depends only on ratios of internal resistors, which can be made very accurate and independent of temperature.
Abstract:
A digitally controlled voltage generator is disclosed for use in applications requiring fine resolution voltage control, such as generating a common voltage for a liquid crystal display. A constant resistance digital to analog converter (DAC) is configured to provide appropriate voltage steps by tuning bias resistors to generate desirable reference voltages for the DAC. The bias resistors are configured to be tuned after placement and routing steps in an integrated circuit design.
Abstract:
An LED lighting device includes first and second luminescent units, first and second current controllers, a line voltage sensing unit and a mode control unit. The first current controller with a first current setting is selectively coupled to the first luminescent unit according to a sensing voltage associated a range of the rectified AC voltage. The second current controller with a second current setting is coupled in series to the second luminescent unit. The line voltage sensing unit is configured to detect the sensing voltage. The mode control unit is configured to operate the LED lighting device in a first driving mode when detecting that the rectified AC voltage is within a first AC range and operate the LED lighting device in a second driving mode when detecting that the rectified AC voltage is within a second AC range.
Abstract:
An LED lighting device includes a slave driving stage and a master driving stage. The slave driving stage includes a first luminescent device and a first current controller for providing a constant current setting in an ON phase. The master driving stage includes a second luminescent device and a current control unit having a second current controller and a current envelope controller. The second current controller provides a current envelope in the ON phase. The current envelope controller sets a level of the current envelope according to a rectified AC voltage. The driving current is regulated by the first current controller according to the constant current setting when the constant current setting is smaller than the level of the current envelope, or by the second current controller according to the current envelope when the level of the current envelope is smaller than the constant current setting.
Abstract:
An LED lighting device includes a first luminescent device for providing light according to a first current, a second luminescent device coupled in series to the first luminescent device for providing light according to a second current, an impedance device for limiting the second current within a predetermined range when a voltage established across the first luminescent device and the second luminescent device exceeds a first predetermined value, and a two-terminal current controller coupled in parallel with the first luminescent device and in series to the second luminescent device and configured to regulate the second current according to a voltage established across the two-terminal current controller.
Abstract:
A two-terminal current controller regulates a first current flowing through a load, which is coupled in parallel with the two-terminal current controller, according to a voltage established across the two-terminal current controller. When the voltage established across the two-terminal current controller does not exceed a first voltage, the two-terminal current controller conducts a second current related to a rectified AC voltage, thereby limiting the first current to zero and regulating the second current according to the load voltage. When the voltage established across the two-terminal current controller is between the first voltage and a second voltage, the two-terminal current controller conducts the second current, thereby limiting the first current to zero and limiting the second current to a constant value larger than zero. When the voltage established across the two-terminal current controller is greater than second voltage, the two-terminal current controller is turned off.