Abstract:
The present invention provides a method for minimizing fluence distribution of a laser over a predetermined pattern. In particular, the method is useful for minimizing fluence variance over a predetermined pattern for lasers used in ophthalmic surgery.
Abstract:
A disposable stabilization and applanation device for reconfiguring the cornea of an eye for ophthalmic laser surgery, includes an applanation lens that is disposed in a particular spatial position with respect to an incident laser beam. The applanation lens is inserted into the central opening of an attachment ring and applanates the eye in response to pressure from a lens cone. The attachment ring is coupled to the eye and includes a skirt which surrounds the applanation lens and extends outwardly therefrom to define a chamber. The skirt is formed with a groove which defines a suction channel between the attachment ring skirt and the corneal surface of an eye. A vacuum source is connected and fluid communication with the suction channel and is selectively activated to create a partial vacuum in the channel.
Abstract:
A closed-loop focusing system and method positions a focusing assembly to a desired positioned. A feedback positioning device, such as a linear encoder, provides an actual or nullreadnull value for the linear movement of the focusing assembly. The desired position is compared to the actual position of the focusing assembly. If the two values are outside of a predetermined tolerance or valid range, then an audible or visual warning will be given. When a laser source is utilized with the focusing system, laser operation will be prevented if the two values are outside of an acceptable range. However, if the difference between the desired position and the actual position are within an acceptable range, the focusing assembly is repositioned to allow real-time systematic correction of the position of the focusing assembly.
Abstract:
A system and method for preparation of donor corneal tissue is disclosed. The system includes two surgical lasers. The first surgical laser is adapted to incise a recipient cornea to enable resection of recipient corneal tissue. The second surgical laser is adapted to incise a donor cornea to enable resection of donor corneal tissue. Both surgical lasers are adapted to make corneal incisions which are defined by incision parameters. Further, both surgical lasers are calibrated to make substantially precise corneal incisions when provided with identical incision parameters.
Abstract:
A system and method for resecting corneal tissue is disclosed. A resection pattern is selected for resecting corneal tissue. The resection pattern is incised in a cornea using a surgical laser, leaving one or more uncut gaps in the incised resection pattern. Any uncut gaps left in the resection pattern may thereafter be incised using an alternate surgical instrument.
Abstract:
An interface for coupling an eye to a surgical laser is disclosed. A lens cone includes a base ring opposite an apex ring. The base ring defines a first plane and is adapted to couple to the delivery tip of the laser such that the first plane has a predetermined position relative to the delivery tip. An applanation lens is affixed to the apex ring and has a surface disposed in a second plane such that the second plane is parallel to and has a predetermined position relative to the first plane. A gripper is engagable with the lens cone. An attachment ring is affixed to the gripper and is adapted to couple to the anterior surface of the eye. When the lens cone and gripper are engaged, the applanation lens contacts the anterior surface of the eye, placing the anterior surface in spatial registration with the delivery tip.
Abstract:
A closed-loop focusing system and method positions a focusing assembly to a desired positioned. A feedback positioning device, such as a linear encoder, provides an actual or “read” value for the linear movement of the focusing assembly. The desired position is compared to the actual position of the focusing assembly. If the two values are outside of a predetermined tolerance or valid range, then an audible or visual warning will be given. When a laser source is utilized with the focusing system, laser operation will be prevented if the two values are outside of an acceptable range. However, if the difference between the desired position and the actual position are within an acceptable range, the focusing assembly is repositioned to allow real-time systematic correction of the position of the focusing assembly.
Abstract:
A method and system for improved material processing using a laser beam. The method and system includes directing a laser beam above, at or below the surface of the material in one or more preferred patterns and with preferred laser pulse characteristics specific to the material to reduce or mitigate the accumulation or effects of gas, debris, fluid, or other by-products of photodisruption either at the location where additional laser pulses are being placed or in other sensitive locations in the material.
Abstract:
Systems and methods of photoaltering a region of a material using a pulsed laser beam. The method includes scanning the pulsed laser beam in a first portion of the region with a first pattern, scanning the pulsed laser beam in a second portion of the region with a second pattern, and separating a flap of the material at the region. The system includes a laser, a controller selecting at least first and second patterns, and a scanner operable in response to the controller. The first pattern has a first maximum acceleration associated with the second portion, and the second pattern has a second maximum acceleration associated with the second portion. The second maximum acceleration is less than the first maximum acceleration. The scanner scans the pulsed laser beam from the laser in the first portion with the first pattern and in the second portion with the second pattern.
Abstract:
A system for laser amplification includes a dual-crystal Pockels cell which is used to control emission of laser pulses from an ultra-fast laser. The Pockels cell is constructed to enable adjustment of the rotational orientation of one crystal relative to the other crystal. The rotational orientation of one or both crystals in the Pockels cell is adjusted to control sidebands in the laser pulse.