摘要:
The invention relates to a device for scanning probe microscopy, said device comprising a scanning microscopy measuring device provided with a measuring probe for scanning microscopy measurements and a sample carrier for receiving a sample to be measured by scanning microscopy; a control device which is connected to the scanning microscopy measuring device in such a way that it is integrated into the system, and is designed in such a way as to automatically control the measuring device in order to perform a scanning microscopy measurement according to pre-defined control parameters; and/or an evaluation device that is connected to the scanning microscopy measuring device in such a way that it is integrated into the system, and is designed in such a way as to automatically evaluate measurements according to pre-defined evaluation parameters.
摘要:
In one aspect the invention relates to a method for testing a chemical entity for its capability to modulate a (poly)peptide that is malfunctioning by means of an interaction of said chemical entity and said (poly)peptide, the method using single-molecule force spectroscopy. In another aspect the invention relates to a method for testing a chemical or physical entity for its capability to interact with a G protein-coupled receptor (GPCR) in its natural membrane environment, the method using single-molecule force spectroscopy.
摘要:
The invention concerns a heat coupling device for scanning force or atomic force microscopy, comprising a first heat conducting device (27), a second heat conducting device (28) and a coupling device (36, 38, 39, 40, 41), in which the first heat conducting device (27) is movable relative to the second heat conducting device (28) and the coupling device (36, 38, 39, 40, 41) is arranged between the first and second heat conducting device (27, 28) and designed so that it is at least partially deformable fluid-like and/or flexible and the heat can be transferred between the first and second heat conducting device (28).
摘要:
The invention relates to a device for scanning probe microscopy, said device comprising a scanning microscopy measuring device provided with a measuring probe for scanning microscopy measurements and a sample carrier for receiving a sample to be measured by scanning microscopy; a control device which is connected to the scanning microscopy measuring device in such a way that it is integrated into the system, and is designed in such a way as to automatically control the measuring device in order to perform a scanning microscopy measurement according to pre-defined control parameters; and/or an evaluation device that is connected to the scanning microscopy measuring device in such a way that it is integrated into the system, and is designed in such a way as to automatically evaluate measurements according to pre-defined evaluation parameters.
摘要:
Proposed is a procedure for carrying out a scanning probe microscopic or atomic force spectroscopic measurement within predetermined parameters, which said procedure encompasses the following steps: a determination of a value variance of at least one of the parameters, and control of an adjustment member in relation to said variance, so that the variance is at least partially compensated for.
摘要:
Proposed is a procedure for carrying out a scanning probe microscopic or atomic force spectroscopic measurement within predetermined parameters, which said procedure encompasses the following steps: a determination of a value variance of at least one of the parameters, and control of an adjustment member in relation to said variance, so that the variance is at least partially compensated for.
摘要:
The present invention relates to a method for determining the state of activation of a (poly)peptide, comprising the steps of: (a) immobilizing a (poly)peptide on a carrier; (b) attaching the (poly)peptide immobilized on the carrier to a force measuring device of a force spectroscope; (c) applying a pulling force to the (poly)peptide and measuring the force required for stretching and/or unfolding of the (poly)peptide attached to the carrier, wherein the measurements are carried out (i) prior to and (ii) after treatment with a known modulator of said (poly)peptide; (d) comparing the force spectra of the (poly)peptide prior to and after treatment with the modulator; and (e) concluding from a difference of the force spectra of step (d) on the state of activation of the (poly)peptide. Furthermore, the present invention relates to a method for determining whether a compound is an activator of (poly)peptide function, comprising the steps of (a) immobilizing a (poly)peptide on a carrier; (b) attaching the (poly)peptide to a force measuring device of a force spectroscope; (c) applying a pulling force to the (poly)peptide and measuring the force required for stretching and/or unfolding of the (poly)peptide attached to the carrier, wherein separate measurements are carried out in the presence of a test and a reference buffer, wherein the test buffer comprises a compound suspected of being an activator of the function of said (poly)peptide and wherein the reference buffer comprises (i) a compound known to have no effect on the activity of said (poly)peptide or (ii) a compound known to be an activator of said (poly)peptide; (d) comparing the force spectra of the (poly)peptide measured in the presence of the test and the reference buffer; and (e) concluding from a difference of the force spectra of step (d) whether the compound suspected of being an activator of said (poly)peptide is an activator of the (poly)peptide. Finally the present invention relates to a method for determining whether a compound is an inhibitor of (poly)peptide function.