Abstract:
A digital signal processor (DSP) comprises an input terminal configured to receive an input, an adaptive nonlinear phase filter coupled to the input terminal, the adaptive nonlinear phase filter having a time-varying phase response, and an adaptive nonlinear amplitude filter coupled to the input terminal, the adaptive nonlinear amplitude filter having a time-varying amplitude response.A method of processing a signal comprises receiving the signal, sending the signal to an adaptive nonlinear phase filter, the adaptive nonlinear phase filter having a time-varying phase response, and sending the signal to an adaptive nonlinear amplitude filter, the adaptive nonlinear amplitude filter having a time-varying amplitude response.
Abstract:
An adaptive nonlinear filtering system includes an adaptive filter module that is configured to generate relative location information pertaining to a relative location of an input signal within an input range; determine an input dependent filter parameter based at least in part on the relative location information; generate an output signal based at least in part on the input dependent filter parameter; and feed back a feedback signal that is generated based at least in part on the output signal and a target signal.
Abstract:
A method of converting an input analog signal to a compensated digital signal comprises converting the input analog signal to an uncompensated digital signal, inputting the uncompensated digital signal to a distortion model, generating a modeled distortion signal based on the uncompensated digital signal, and subtracting the modeled distortion signal from the uncompensated digital signal to generate the compensated digital signal. A distortion compensating analog to digital converter (ADC) comprises an uncompensated ADC configured to convert an input analog signal to an uncompensated digital signal, and a compensation module coupled to the uncompensated ADC, configured to receive the uncompensated digital signal, generate a modeled distortion signal based on the uncompensated digital signal and subtract the modeled distortion signal from the uncompensated digital signal to generate the compensated digital signal.
Abstract:
A method of processing a signal is disclosed. The method comprises generating a digital signal, converting the digital signal to an analog signal, and generating an amplified analog signal having distortions. The method further comprises converting the amplified analog signal to a feedback digital signal at a sample rate and updating a model of the distortions based on the feedback digital signal.
Abstract:
A method of processing an input signal that includes an input variable is disclosed. The method comprises comparing the input variable to a set of ordered constants, determining the relative location of the input variable within a range of possible inputs and determining a filter coefficient of a nonlinear filter using the relative location of the input variable. A configurable filter comprises an interface configured to receive an input signal that includes an input variable, a nonlinear filter coupled to the interface, configured to process the input signal, and a processor coupled to the nonlinear filter, configured to determine the relative location of the input variable within a range of possible inputs and to determine a filter coefficient of the nonlinear filter using the relative location of the input variable.
Abstract:
A system and method are disclosed for correcting for output distortion of an analog to digital converter, comprising: estimating the output distortion, providing an estimated distortion, and combining an output of the analog to digital converter with the estimated distortion to compensate for the output distortion. The compensating module for correcting output distortion of an analog to digital converter comprises a calibration module configured to estimate the output distortion and a combiner configured to combine an output of the analog to digital converter with the estimated distortion to compensate the output distortion.
Abstract:
A system and method are disclosed for processing a signal propagated through a nonlinear channel. The method includes modeling the channel characteristics to produce a linearized channel model, deriving an inverse linearized channel model from the linearized channel model, and filtering the signal using the inverse linearized channel model.
Abstract:
A system for reducing peaks comprises a processor and a memory. The processor is configured to determine a phase offset for each of a plurality of input signals. The phase offset for each of the plurality of input signals are determined using one or more trials of phase offsets to determine a selected set of phase offsets. The processor is further configured to modulate the plurality of input data signals using the selected set of phase offsets to produce a plurality of modulated phase offset data signals and to generate a sum of the plurality of modulated phase offset data signals, wherein the sum has a lower peak value during a trial of the one or more trials of phase offsets as compared to the sum during another trial not using the selected set of phase offset signals. The memory is coupled to the processor and configured to provide the processor with instructions.
Abstract:
Processing an input signal that includes an input variable is disclosed. The input variable is compared to a set of ordered constants, the relative location of the input variable within a range of possible inputs is determined and a filter coefficient of a nonlinear filter is determined using the relative location of the input variable. A configurable filter includes an interface configured to receive an input signal that includes an input variable, a nonlinear filter coupled to the interface, configured to process the input signal, and a processor coupled to the nonlinear filter, configured to determine the relative location of the input variable within a range of possible inputs and to determine a filter coefficient of the nonlinear filter using the relative location of the input variable.
Abstract:
An observation system configured to observe one or more initially unknown state variables of an observed system includes an input interface configured to receive a system input, and a processing module coupled to the input interface. The processing module is configured to determine the one or more initially unknown state variables, and the determination is based at least in part on the system input, a plurality of known state variables, and a time varying mode vector that is time dependent.