Abstract:
In one example, a method of protecting customer data in a networked system comprises collecting sensor data available at sensor nodes within a sensor network in communication with a service data platform over a network. The method includes encrypting the sensor data using a certified public key associated with a customer key-pair, the sensor data representing the customer data associated with sensitive identification information. The sensor data is cryptographically signed with a device private key. The method includes transporting the encrypted sensor data to the service data platform for storage, and decrypting at the service data platform, the encrypted sensor data using a private key sharing scheme that reconstructs the private key associated with the customer key-pair using a first share and a password encrypted second share, the first share assigned to the service data platform and the password encrypted second share assigned to a customer of the customer key-pair.
Abstract:
A method of determining the position of an array of sensors, an array of solid-state lamps, or other devices which sense or emit electromagnetic waves includes first determining a sensing or emitting distribution for one of the devices, then integrating that distribution over the area to be covered by the sensors or emitters. In response to the integrated distribution, the sensors or emitters may be repositioned, reconfigured, or reoriented to provide desired coverage. Wireless access points that communicate to wireless end points associated with the lights and/or sensors are designed and positioned to provide adequate signal strength. All elements, light distribution, sensor range, and wireless signal strength may be plotted in contour plots within the same user interface that enables users to place the devices in a specified area.
Abstract:
An embodiment method for communicating data within a lighting sensory network may include configuring a first plurality of lighting nodes to operate as sensor nodes, configuring a second plurality of lighting nodes to operate as listening nodes, generating, by a sensor node using an encryption key, a sensor message associated with sensor data and including at least a timestamp, calculating an interval for transmitting the sensor message, wherein the interval is randomized and exponentially increasing, determining whether to transmit the sensor message based on the calculated interval, transmitting the sensor message in response to determining to transmit the sensor message based on the calculated interval, receiving, by a listening node, the sensor message at a listening node, determining whether the received sensor message is useful based on the timestamp and a predefined age threshold, and performing a lighting action in response to determining the received sensor message is useful.
Abstract:
Methods, devices, and systems for implementing lighting infrastructure application frameworks and networks and associated revenue models. In one embodiment, a computing device may receive a request from a first device to access data from a lighting infrastructure application framework, and the data from the lighting infrastructure application framework may include data from lighting node platform(s). In an embodiment, the computing device may perform authorizations related to providing access to data, as well as transmit responses to requests for data. Costs and revenues associated with applications may also be performed based on usage of platforms, sensors, and controllers within a lighting infrastructure. In an embodiment, software, applications, and other instructions may be transmitted by a computing device in response to receiving requests. In another embodiment, a computing device may process received data (e.g., sensor data from lighting node platforms) to detect trends or events relevant to applications.
Abstract:
In various example embodiments, a system and method for interactive applications that use location-based information from a light sensor network are presented. In example embodiments, data indicating a destination location inside a geofence is received. The geofence represents a boundary around multiple private beacon nodes, which are associated with a light sensor network, and their associated beacon communications ranges. Navigation and tracking outside the geofence is based on at least one of global positioning system (GPS) signals and beacon signals received by the mobile device from at least one public beacon device within a beacon communications range of the mobile device located outside the geofence. Navigation and tracking inside the geofence is based on the beacon signals received by the mobile device from at least one private beacon node within the beacon communications range of the mobile device located inside the geofence and a virtual map including an area within the geofence.
Abstract:
In one example, a sensor node comprises a core node to enable lighting control for a luminaire. The core node has a base forming a plug portion of a socket. The plug portion has at least one optional pin and represents a NEMA socket including a receptacle that is attached to the base of the core node such that the core node is enclosed by the NEMA socket. The socket provides light level control for a light-emitting diode (LED) driver for the luminaire. The sensor node further comprises one or more peripheral devices having sensors for detecting conditions and producing sensor information based on the detected conditions. The sensor node also includes a pod bus which enables power signals to be transmitted to each of the peripheral devices.
Abstract:
Methods, devices, systems, and non-transitory process-readable storage media for controlling lighting nodes of a lighting system associated with a lighting infrastructure based on composited lighting models. An embodiment method performed by a processor of a computing device may include operations for obtaining a plurality of lighting model outputs generated by lighting control algorithms that utilize sensor data obtained from one or more sensor nodes within the lighting infrastructure, combining the plurality of lighting model outputs in an additive fashion to generate a composited lighting model, calculating lighting parameters for a lighting node within the lighting infrastructure based on the composited lighting model and other factors, and generating a lighting control command for configuring the lighting node within the lighting infrastructure using the calculated lighting parameters. The method may be performed by any combination of lighting node(s), sensor node(s), a remote server, and/or other devices within the lighting infrastructure.
Abstract:
A network using existing streetlights is described. Each street light becomes a node in the network, and each includes a power terminal for receiving electrical power, a light source coupled to the power terminal, a processor coupled to the power terminal, a network interface coupled between the processor and the network of lighting systems, and a sensor coupled to the processor for detecting a condition at the node, and in response providing information about that condition to the processor.
Abstract:
In various example embodiments, a system and method for interactive applications that use location-based information from a light sensor network are presented. In example embodiments, data indicating a destination location inside a geofence is received. The geofence represents a boundary around multiple private beacon nodes, which are associated with a light sensor network, and their associated beacon communications ranges. Navigation and tracking outside the geofence is based on at least one of global positioning system (GPS) signals and beacon signals received by the mobile device from at least one public beacon device within a beacon communications range of the mobile device located outside the geofence. Navigation and tracking inside the geofence is based on the beacon signals received by the mobile device from at least one private beacon node within the beacon communications range of the mobile device located inside the geofence and a virtual map including an area within the geofence.
Abstract:
In one example, a computing device is configured to calculate fees and revenues related to a lighting infrastructure application framework. An example computing device comprises a memory and a processor coupled to the memory configured with processor-executable instructions to perform operations comprising receiving, data that includes at least one of sensor data and controller information related to at least one of a sensor and a controller, wherein the sensor and the controller are within a local area network coupled to a computing device having the processor and are associated with at least one lighting node platform device; calculating information describing the fees and the revenues associated with the received data, wherein the revenues are for a lighting infrastructure owner associated with the computing device; and transmitting the calculated information to another device associated with the lighting infrastructure application framework.