摘要:
A computer readable medium is provided embodying instructions executable by a processor to perform a method for sparse volume segmentation for 3D scan of a target. The method including learning prior knowledge, providing volume data comprising the target, selecting a plurality of key contours of the image of the target, building a 3D spare model of the image of the target given the plurality of key contours, segmenting the image of the target given the 3D sparse model, and outputting a segmentation of the image of the target.
摘要:
A method and system for segmenting multiple brain structures in 3D magnetic resonance (MR) images is disclosed. After intensity standardization of a 3D MR image, a meta-structure including center positions of multiple brain structures is detected in the 3D MR image. The brain structures are then individually segmented using marginal space learning (MSL) constrained by the detected meta-structure.
摘要:
An electrical logic controller behavior model of logic controller behavior is automatically or semi-automatically derived from a model of mechanical machine operation. To create the electrical model, an electrical step is created corresponding to each mechanical step of the mechanical model. For each mechanical transition on the mechanical step, a corresponding electrical transition is created on the corresponding electrical step. For each identified signal associated with an end position of the mechanical step, a condition is created for the associated signal on the corresponding electrical transition. The electrical logic controller behavior model is then used to generate PLC-specific software to control a machine or plant.
摘要:
A method for displaying real-time imagery of coronary arteries including a chronic total occlusion (CTO) includes acquiring three-dimensional image data of coronary arteries using a three-dimensional medical imaging device, wherein the three-dimensional image data includes imagery of the CTO. A radiocontrast agent is administered to a patient. Real-time image data of the coronary arteries are acquired using one or more fluoroscopes. The real-time image data does not include imagery of the CTO and down-stream vessel structure. The three-dimensional image data is co-registered with the real-time image data using an image processing device within a vicinity of the CTO. The co-registered image data are displayed in real-time using a display device to accurately illustrate the location of the CTO within the context of the real-time image data.
摘要:
A method and system for data dependent multi phase image visualization, includes: acquiring a plurality of series of image data acquisitions; registering the plurality of series of image data acquisitions to a same reference series to create a plurality of registered series; combining information from the registered series to create a new series; creating a further new series by a selection decision based on combination rules from information from the plurality of registered series and the new series; and displaying the further new series.
摘要:
A method for generating a positron emission tomography (PET) attenuation correction map from magnetic resonance (MR) images includes segmenting a 3-dimensional (3D) magnetic resonance (MR) whole-body image of a patient into low-signal regions, fat regions, and soft tissue regions; classifying the low-signal regions as either lungs, bones, or air by identifying lungs, identifying an abdominal station, and identifying a lower body station; and generating an attenuation map from the segmentation result by replacing the segmentation labels with corresponding representative attenuation coefficients.
摘要:
A method for reconstructing a signal from incomplete data in a signal processing device includes acquiring incomplete signal data. An initial reconstruction of the incomplete signal data is generated. A reconstruction is generated starting from the initial reconstruction by repeating the steps of: calculating a sparsity transform of the reconstruction, measuring an approximation of sparsity of the reconstruction by applying an m-estimator to the calculated sparsity transform, and iteratively optimizing the reconstruction to minimize output of the m-estimator thereby maximizing the approximation of sparsity for the reconstruction. The optimized reconstruction is provided as a representation of the incomplete data.
摘要:
A method for automatically detecting and tracking objects in a scene. The method acquires video frames from a video camera; extracts discriminative features from the video frames; detects changes in the extracted features using background subtraction to produce a change map; uses the change map to use a hypothesis to estimate of an approximate number of people along with uncertainty in user specified locations; and using the estimate, track people and update the hypotheses for a refinement of the estimation of people count and location.
摘要:
A method for automatically selecting a number of Gaussian modes for segmentation of a cardiac magnetic resonance (MR) image, including: identifying a left ventricle (LV) in a cardiac MR image slice; quantifying the LV blood pool; obtaining a mask for the LV blood pool; generating a ring mask for a myocardium of the LV from the LV blood pool mask; fitting three Gaussian modes to a histogram of the image slice to obtain a corresponding homogeneity image for the myocardium; computing a quality of fitting (QOF) measure for the three Gaussian modes based on the corresponding homogeneity image; repeating the fitting and computing steps for four and five Gaussian modes; and selecting the homogeneity image of the number of Gaussian modes with the largest QOF measure as the homogeneity image for processing.
摘要:
A method of tracking a pose of a moving camera includes receiving a first image from a camera, receiving a sequence of digitized images from said camera, recording, for each of said sequence of digitized images, the pose and 2D correspondences of landmarks, reconstructing a location and appearance of a 2-dimensional texture patch from 2D correspondences of the landmarks by triangulation and optimization, computing back-projection errors by comparing said reconstructed texture patch with said first received image; and reconstructing said location and appearance of said 2-dimensional texture patch from the 2D correspondences of the landmarks of said sequence of digitized images by triangulation and optimization after eliminating those landmarks with large back-projection errors.