摘要:
A method for model based motion tracking of a catheter during an ablation procedure includes receiving a training series of biplanar fluoroscopic images of a catheter acquired under conditions that will be present during an ablation procedure, segmenting and processing the series of biplanar images to produce a distance transform image for each biplanar image at each acquisition time, minimizing, for each pair of biplanar images at each acquisition time, a cost function of the distance transform image for each pair of biplanar images to yield a translation parameter that provides a best fit for a model of the catheter to each pair of biplanar images at each acquisition time, and calculating an updated catheter model for each acquisition time from said translation parameter.
摘要:
A method for compensating cardiac and respiratory motion in atrial fibrillation ablation procedures includes (a) simultaneously determining a position of a circumferential mapping (CFM) catheter and a coronary sinus (CS) catheter in two consecutive image frames of a series of first 2-D image frames; (b) determining a distance between a virtual electrode on the CS catheter and a center of the CFM catheter for a first image frame of the two consecutive image frames, and for a second image frame of the two consecutive image frames; and (c) if an absolute difference of the distance for the first image frame and the distance for the second image frame is greater than a predetermined threshold, compensating for motion of the CFM catheter in a second 2-D image.
摘要:
A method for automatically initializing pose for registration of 2D fluoroscopic abdominal aortic images with a 3D model of an abdominal aorta includes detecting a 2D iliac bifurcation and a 2D renal artery bifurcation from a sequence of 2D fluoroscopic abdominal aortic images, detecting a spinal centerline in a 2D fluoroscopic spine image, providing a 3D iliac bifurcation and a 3D renal artery bifurcation from a 3D image volume of the patient's abdomen, and a 3D spinal centerline from the 3D image volume of the patient's abdomen, and determining pose parameters {x, y, z, θ}, where (x, y) denotes the translation on a table plane, z denotes a depth of the table, and θ is a rotation about the z axis, by minimizing a cost function of the 2D and 3D iliac bifurcations, the 2D and 3D renal artery bifurcation, and the 2D and 3D spinal centerlines.
摘要:
A system receives an image volume of a patient. A catheter applied to the patient contains at least one sensor, which may be a microcoil and which is detectable in the image volume. A size and a shape of a region of interest are pre-defined. A processor determines a location of the at least one sensor in the image volume. The image volume is generated by a medical imaging device. The processor defines the shape and size of the region of interest relative to the location of the at least one sensor to determine the region of interest in the image volume. Image data of the region of interest in the image volume and of the region of interest in a previous image volume are registered. The region of interest is determined during an interventional procedure on the patient.
摘要:
A method for automatically detecting the presence of contrast in an x-ray image includes acquiring an x-ray image prior to administration of contrast. A background image is estimated based on the x-ray image. The contrast is administered. A set of x-ray images is acquired. The background image is subtracted from the set of images. Image intensity is determined for each of the subtracted images. The subtracted images having highest image intensity are selected. A predefined shape model is fitted to the selected subtracted images. The fitting of the predefined shape model is used to fit the shape model to each of the subtracted images. A feature value is calculated for each image frame based on pixel intensities of each pixel fitted to the shape model for the corresponding subtracted image. An image frame of peak contrast is determined by selecting the image frame with the greatest feature value.
摘要:
A method (10) to compensate for cardiac and respiratory motion in cardiac imaging during minimal invasive (e.g., trans-catheter) AVI procedures by image-based tracking (20, 25) on fluoroscopic images.
摘要:
A method and system for determining an angulation of a C-arm image acquisition system for aortic valve implantation is disclosed. One or more landmarks of the aortic root is detected in a 3D image. A plane representing an aortic annulus direction is defined in the 3D image based on the detected anatomic landmarks. A viewing angle is determined that is perpendicular to the defined plane.
摘要:
Automatic measurement of morphometric and motion parameters of a coronary target includes extracting reference frames from input data of a coronary target at different phases of a cardiac cycle, extracting a three-dimensional centerline model for each phase of the cardiac cycle based on the references frames and projection matrices of the coronary target, tracking a motion of the coronary target through the phases based on the three-dimensional centerline models, and determining a measurement of morphologic and motion parameters of the coronary target based on the motion.
摘要:
A method for imaging for cardiac catheter guidance comprises displaying a two-dimensional (2D) image of a heart, including a catheter; registering and blending the 2D image and a three-dimensional (3D) image of the heart to derive a blended image; displaying the blended image and the 3D image; and extracting an image of the catheter and inserting it into the 3D image.
摘要:
A method and system for extracting a silhouette of a 3D mesh representing an anatomical structure is disclosed. The 3D mesh is projected to two dimensions. Silhouette candidate edges are generated in the projected mesh by pruning edges and mesh points based on topology analysis of the projected mesh. Each silhouette candidate edge that intersects with another edge in the projected mesh is split into two silhouette candidate edges. The silhouette is extracted using an edge following process on the silhouette candidate edges.