Abstract:
Aspects herein relate to a low-friction septum for providing a leak-resistant seal for use in a vascular access device. In an embodiment, a device for vascular access hemostasis is included having an enclosure defining a cavity and configured to at least partially receive a medical device. The device can include a first seal portion and a second seal portion, the cavity disposed between the first seal portion and the second seal portion. The device can include a barrel in structural communication with the second seal portion, the second seal portion including a septum seal. The second seal portion can define two or more discrete portions, each separated by one or more split lines. The discrete portions can include a mating surface to interface with mating surfaces of other discrete portions. The mating surface can include a surface topology including raised portions and depressions. Other embodiments are also included herein.
Abstract:
A catheter hemostasis valve hub for a catheter or introducer sheath has a generally tubular shell with a first region and a second region having a greater thickness than the first region, a pre-slit hemostasis seal within the shell, and an end cap to retain the hemostasis seal within the shell having a web section. The hub is easily cut or slit after introduction of the catheter without prior breaking.
Abstract:
A hemostasis valve assembly includes a housing and a valve member. The housing includes a central bore. The valve member is positioned within the housing and includes opposed first and second primary surfaces, a thickness, an opening, and first and second slits. The valve thickness is defined between the first and second primary surfaces. The opening is formed in the first primary surface. The first and second slits intersect each other and extend through a portion of the valve thickness. At least one of the first and second slits is accessible within the opening.
Abstract:
A seal assembly establishes sealing engagement with a plurality of differently dimensioned instruments passing through a trocar. The seal assembly is a caged seal assembly movably disposed within the trocar and includes at least two seal segments disposable into and out of a sealing orientation relative to the instrument. A cage structure of the seal assembly includes at least two cage segments each connected to a seal segment, a biasing assembly connected to the cage structure and disposed and structured to normally bias the seal segments into sealing orientation.
Abstract:
A peripheral venous catheter comprising a vein indwelling section and a cannula (14), wherein the vein indwelling section includes a connection section and a tube connected to the connection section in a firmly bonded manner, and wherein the cannula is inserted into the vein indwelling section prior to inserting the venous catheter into a vein, and a wall is provided in the connection, which runs substantially perpendicular to the longitudinal extension of the connection section, including a plurality of circular ring-like wall segments, and exhibiting a central passage for the cannula at the middle of the wall, such that the wall segments form a boundary for a chamber provided in the connection section on the side facing the tube, in order to accommodate blood exiting the tube after the cannula has been removed.
Abstract:
A dual sealing system (20) is provided for use with a probe (21) to allow access to an interior space (34) from an exterior environment (32). The system (20) includes a housing (22) defining a port (24) extending along a longitudinal axis (26) between an exterior end (28) of the housing and an interior end (30) of the housing to establish communication between an exterior environment (32) and an interior space (34); a first flexible, resilient penetratable member (40) extending across the port at a first location along the axis, the first penetratable member configured to create a seal around the probe with the probe inserted therethrough; and a second flexible, penetratable member (42) extending across the port at a second location along the axis spaced toward the interior end from the first location, the second penetratable member configured to create a seal after having been penetrated by the probe and the probe has been removed from the second penetratable member.
Abstract:
A hub for a sheath, catheter, or other tubular device includes a tubular hub body including first and second ends, and a lumen extending therebetween and surrounding a central longitudinal axis, the lumen having a first cross-sectional area sized for receiving a medical device therethrough. A valve is secured within the lumen that includes an elastomeric valve body including a passage extending therethrough between front and rear surfaces thereof and offset from the central axis. The valve body defines a second cross-sectional area larger than the first cross-sectional area in a relaxed state in which the passage defines an oval shape, and is secured within the lumen in a compressed state in which the passage is compressed to a closed configuration for sealing the passage from fluid flow. The passage is resiliently expandable to accommodate receiving an instrument therethrough while providing a seal around the instrument.
Abstract:
A tearaway sheath assembly (100) having a splittable sheath tube (102) a splittable hub (110), a splittable valve (150) and a split cap (180). The valve (150) is of the elongated duckbill type and having a slit (158) almost completely across the distal end wall (154) such that two diverging sides (156) of the distal valve portion may be moved apart during insertion therethrough of a dilator or a catheter. A two-part cap (180) is affixed to the hub proximal end (120) and traps a seating flange (168) of the valve between itself and a seating groove (136) of the hub. Pairs of opposed gaps (184,122) of the cap (180) and the hub (110) are aligned with frangible sections or seams (108) of the sheath tube (102) and frangible sections (172) and slits (166) of the valve, facilitating splitting of the assembly (100) when desired by the practitioner to peel it away from the inserted catheter.
Abstract:
A tearaway sheath assembly (100) having a splittable sheath tube (102) a splittable hub (110), a splittable valve (150) and a split cap (180). The valve (150) is of the elongated duckbill type and having a slit (158) almost completely across the distal end wall (154) such that two diverging sides (156) of the distal valve portion may be moved apart during insertion therethrough of a dilator or a catheter. A two-part cap (180) is affixed to the hub proximal end (120) and traps a seating flange (168) of the valve between itself and a seating groove (136) of the hub. Pairs of opposed gaps (184,122) of the cap (180) and the hub (110) are aligned with frangible sections or seams (108) of the sheath tube (102) and frangible sections (172) and slits (166) of the valve, facilitating splitting of the assembly (100) when desired by the practitioner to peel it away from the inserted catheter.
Abstract:
The invention is directed to a trocar adapted to form a seal around a surgical instrument, the trocar comprising a cannula having an axis extending between a proximal end and a distal end; a housing having a proximal wall and forming with the cannula a working channel sized and configured to receive the instrument; a septum seal disposed in the housing and extending transverse to the axis of the cannula across the working channel, the septum seal having a normal state when the instrument is absent from the working channel and a stretched state when the instrument is being withdrawn from the working channel; portions of the proximal wall of the housing defining an orifice sized and configured to receive the instrument into the working channel; and an elastomeric ring-shaped projection extending axially distally between the proximal wall and the septum seal, the ring-shaped projection having an axial length adapted to deform to prevent inversion and binding of the septum seal and the orifice upon withdrawal of the surgical instrument. In particular, the septum seal is prevented from reaching the orifice in the proximal wall of the housing when the instrument is withdrawn. The projection may be bonded, insert-molded, or compressively fitted to the proximal wall of the housing. The projection may be formed of an elastomeric material such as natural or synthetic rubber. The projection may further comprise a plurality of portions or fingers extending axially distally from the proximal wall, each of the extending portions or fingers may further include a living hinge. In another aspect, the ring-shaped projection may be formed on the surface of the septum seal instead of the proximal wall of the housing. That is, the ring-shaped projection may be formed to extend axially proximally from the surface of the septum seal toward the proximal wall of the housing.