摘要:
The present invention provides a compound and a method of making a compound according to the following formula: 1 where R1 is an alkyl group having 1 to 12 carbons; R2 is a urea group; R3 is an active group, such as fluorescein, a toxin, radiolabel or drug; and R4, R5 and R6 are each independently a halide group.
摘要:
The invention relates to a method for mixing at least two fluids, wherein the fluids are introduced as adjacent fluid lamellae into a swirl chamber, forming a fluid spiral flowing inward. Removal of the resulting mixture is carried out from the center of the fluid spiral. The static micromixer has a mixing chamber in the form of a swirl chamber (6), in which the inlet channels (15a, b, 16a, b) discharge in such a way that the fluid lamellae enter in the form of fluid jets forming a fluid spiral (50) flowing inward. At least one outlet (25) is fluidically connected to the swirl chamber (6) for removing the resulting mixture.
摘要:
The present invention provides a general approach for G protein coupled receptors that may be used to define agonists and antagonists, and the specificity of receptor coupling to G protein subunits. Methods of the present invention use small volumes (microliters) and are compatible with high throughput flow cytometry. When assays of the present invention are multiplexed, the specificity of the interactions of a receptor with many G proteins may be determined simultaneously.
摘要:
The invention relates to a procedure and a micromixer for mixing at least two fluids. The aim of the invention is to reduce the mixing time of the micromixer compared to micromixers known to the art while maintaining high mixing quality and small structural dimensions. The inventive procedure is characterized by the following steps: a plurality of separated fluid currents of both fluids are brought together and alternately adjacent fluid lamellae of both fluids are formed: the combined fluid currents are carried away and a focused total fluid current is formed; the focused total fluid current is fed as fluid jet into an expansion chamber; and the resulting mixture is drawn off. The micromixer comprises a plurality of alternately adjacent fluid channels which open into an inlet chamber. A focusing channel is in fluid connection with said inlet chamber and opens into an expansion chamber. The inventive procedure and micromixer are especially advantageous in that they are suitable for the production of emulsions and dispersions.
摘要:
The present invention provides a compound and a method of making a compound according to the following formula: where R1 is an alkyl group having 1 to 12 carbons; R2 is a urea group; R3 is an active group, such as fluorescein, a toxin, radiolabel or drug; and R4, R5 and R6 are each independently a halide group.
摘要翻译:本发明提供一种化合物及其制备方法,其中R 1为具有1至12个碳原子的烷基; R 2是尿素基团; R 3 3是活性基团,例如荧光素,毒素,放射性标记物或药物; 和R 4,R 5和R 6各自独立地为卤素基团。
摘要:
A process for rapidly mixing phosgene and an amine in the gas phase to produce the corresponding isocyanate. Micro-structure mixers are used for the rapid mixing. The educts emerge from the micro-structure mixer in the form of thin free jets which mix very rapidly by diffusion and/or turbulence. As a result, the mixing operation is accelerated substantially as compared with conventional reactors. The isocyanate yield is also increased.
摘要:
Microstructure flow mixing devices are disclosed herein. An example device a first panel, a first plurality of raised features extending from a first surface of the first panel, a second plurality of raised features extending from the first surface of the first panel and a plurality of divider microstructures extending from the first surface of the first panel in line with and in between the first plurality of raised features and the second plurality of raised features. At least a portion of adjacent divider microstructures are spaced apart to form feed pathways or cross channels.
摘要:
A powder mixing microchip for mixing powder components, a powder mixing system incorporating the same and a powder mixing method for mixing powder components, the powder mixing microchip comprising: a powder mixing unit (1) for mixing a plurality of powder components to provide a powder mixture, the powder mixing unit including a powder mixing (5) channel in which powder components are mixed on being transported there through, a powder outlet port (8) through which the powder mixture is delivered, and a plurality of mixing gas supply channels (7) fluidly connected to the powder mixing channel at spaced locations along a length thereof through which mixing gas flows are delivered to effect mixing of the powder components on being transported through the powder mixing channel.
摘要:
The invention relates to a procedure and a micromixer for mixing at least two fluids. The aim of the invention is to reduce the mixing time of the micromixer compared to micromixers known to the art while maintaining high mixing quality and small structural dimensions. The inventive procedure is characterized by the following steps: a plurality of separated fluid currents of both fluids are brought together and alternately adjacent fluid lamellae of both fluids are formed: the combined fluid currents are carried away and a focused total fluid current is formed; the focused total fluid current is fed as fluid jet into an expansion chamber; and the resulting mixture is drawn off. The micromixer comprises a plurality of alternately adjacent fluid channels (2, 3) which open into an inlet chamber (4). A focusing channel (5) is in fluid connection with said inlet chamber and opens into an expansion chamber (6). The inventive procedure and micromixer are especially advantageous in that they are suitable for the production of emulsions and dispersions.
摘要:
The present invention provides a general approach for G protein coupled receptors that may be used to define agonists and antagonists, and the specificity of receptor coupling to G protein subunits. Methods of the present invention use small volumes (microliters) and are compatible with high throughput flow cytometry. When assays of the present invention are multiplexed, the specificity of the interactions of a receptor with many G proteins may be determined simultaneously.