Abstract:
Processes for the purification of bio-based acrylic acid to crude and glacial acrylic acid are provided. The bio-based acrylic acid is produced from hydroxypropionic acid, hydroxypropionic acid derivatives, or mixtures thereof. The purification includes some or all of the following processes: extraction, drying, distillation, and melt crystallization. The produced glacial or crude acrylic acid contains hydroxypropionic, hydroxypropionic acid derivatives, or mixtures thereof as an impurity.
Abstract:
Hydroxypropionic acid, hydroxypropionic acid derivatives, or mixtures thereof are dehydrated using a catalyst and a method to produce bio-acrylic acid, acrylic acid derivatives, or mixtures thereof. A method to produce the dehydration catalyst is also provided.
Abstract:
Processes for the purification of bio-based acrylic acid to crude and glacial acrylic acid are provided. The bio-based acrylic acid is produced from hydroxypropionic acid, hydroxypropionic acid derivatives, or mixtures thereof. The purification includes some or all of the following processes: extraction, drying, distillation, and melt crystallization. The produced glacial or crude acrylic acid contains hydroxypropionic, hydroxypropionic acid derivatives, or mixtures thereof as an impurity.
Abstract:
Disclosed herein is a mixed phosphate catalyst for converting lactic acid to acrylic acid, which is characterized by a high conversion of lactic acid, a high selectivity for acrylic acid, a high yield of acrylic acid, and correspondingly low selectivity and molar yields for undesired by-products. This is achieved with a particular class of catalysts defined by a mixture of metal-containing phosphate salts. Further, the catalyst is believed to be stable and active for lengthy periods heretofore unseen in the art for such dehydration processes.
Abstract:
Hydroxypropionic acid, hydroxypropionic acid derivatives, or mixtures thereof are dehydrated using a catalyst and a method to produce bio-acrylic acid, acrylic acid derivatives, or mixtures thereof. A method to produce the dehydration catalyst is also provided.
Abstract:
Processes for the catalytic dehydration of hydroxypropionic acid, hydroxypropionic acid derivatives, or mixtures thereof to acrylic acid, acrylic acid derivatives, or mixtures thereof with high yield and selectivity and without significant conversion to undesired side products, such as, acetaldehyde, propanoic acid, and acetic acid, are provided.
Abstract:
Processes for the catalytic dehydration of hydroxypropionic acid, hydroxypropionic acid derivatives, or mixtures thereof to acrylic acid, acrylic acid derivatives, or mixtures thereof with high yield and selectivity and without significant conversion to undesired side products, such as, acetaldehyde, propanoic acid, and acetic acid, are provided.
Abstract:
A photo-catalyst comprising a compound having structure composing a network formed by mutual connection of an unit constructing oxygen octahedra or tetrahedra containing a transition metal ion or a typical metallic ion in d10 or d0 configuration and an unit constructing PO4 tetrahedron connected to said oxygen octahedra or tetrahedra, further containing an alkali metal besides said metallic ion as a consituent element, for example, AXNb2mP4O6m+8 (wherein A is Na, K or Li, X is 2, 3 or 4 and m is 3, 3.5 or 4) AXTa2mP4O6m+8 (wherein A is Na, K or Li, X is 2, 3 or 4 and m is 3, 3.5 or 4) AXIn2mP4O6m+8 (wherein A is Na, K or Li, X is 2, 3 or 4 and m is 3, 3.5 or 4) and RuO2 is loaded on the compound. The photo-catalyst can be used for the complete decomposition of water.
Abstract:
The present invention provides a heterogeneous catalyst which is highly active, excellent in selectivity and free from elution of its catalyst-components during reaction and which has long lifetime. That is, a phosphate of a metal selected from the group consisting of aluminum, gallium and iron is used as the catalyst for transesterification of the present invention.
Abstract:
Processes for the catalytic dehydration of hydroxypropionic acid, hydroxypropionic acid derivatives, or mixtures thereof to acrylic acid, acrylic acid derivatives, or mixtures thereof with high yield and selectivity and without significant conversion to undesired side products, such as, acetaldehyde, propanoic acid, and acetic acid, are provided.