Abstract:
A method and application of accelerating material cleaning with strong magnet particles are provided. The wind airflow enter from the material inlet to accelerate the material, so that the material particles move at a certain speed, and the position and speed of the material can be controlled when it reaches the highest speed; There are internal strong magnetic field units where the material passes, especially when the material reaches the highest speed; Internal strong magnetic field units are used to generate the internal strong magnetic field. According to the method and application, the internal strong magnetic field is used to eliminate the attractive forces such as electromagnetic force, van der Waals force and liquid bridge between the material and the impurities attached to the surface of the material.
Abstract:
A magnetic filter according to one embodiment of the present disclosure includes a housing through which fluid or powder containing metal particles passes; magnets arranged inside the housing; and a rotation unit that rotates the magnets so as to revolve around the rotation center, wherein the magnets include first magnets and second magnets located farther from the rotation center than the first magnets, and wherein any one of the second magnets forms an equilateral triangle arrangement with two first magnets adjacent to any one of the second magnets.
Abstract:
Method for detecting the presence or absence of a biological or chemical substance in a particular sample mixed with a suspension with functionalized magnetic particles, comprising: providing a light source and detector, providing a constant magnetic force perpendicular to the light's propagation direction by applying a constant magnetic field gradient, and with an absolute value which is higher than 0.1 T and measuring the change of the magnetic particle's suspension transparency versus time and comparing it with the time-variation in absence of the targeted biological or chemical substance. The method of the invention allows monitoring the transparency irrespective of the emitted wavelength and particle's optical properties.
Abstract:
An ion separator water pump is provided, comprising a stator cylinder with input and output ports, homopolar north poles, and homopolar south poles, a drive shaft, a rotor core, and seals. Salt water pumped through the ion separator water pumps is desalinated by alternatively flushing out the positive and negative ions at various points as the water flows through the proposed devices. Two pump configurations are presented for use in desalination of salt water.
Abstract:
Embodiments of the invention relate to a clinical instrument analyzer system for the automatic analysis of patient samples. In one embodiment, the analyzer may be used to analyze bodily fluid samples, such as blood, plasma, serum, urine or cerebrospinal fluid, for example. Embodiments of the invention relate to an apparatus and method, for example, an immunoassay method, for separating out target molecules in a magnetic field and then analyzing those target molecules with a luminometer.
Abstract:
A device for manipulating magnetic or magnetizable objects in a medium is provided. The device has a surface lying in a plane and comprises a set of at least two conductors electrically isolated from each other, wherein the at least two conductors are adapted for both generating a magnetophoresis force for moving the magnetic or magnetizable objects over the surface of the device in a direction substantially parallel to the plane of the surface, and generating a dielectrophoresis force for moving the magnetic or magnetizable objects in a direction substantially perpendicular to the plane of the surface. Also provided is a method for manipulating magnetic or magnetizable objects in a medium. The method uses a combined magnetophoresis and dielectrophoresis actuation principle for controlling in-plane as well as out-of-plane movement of the magnetic or magnetizable objects.
Abstract:
The present invention includes a magnetically susceptible polymer component, a method of making the same, and apparatuses and systems for mixing, separating or localizing a magnetically susceptible polymer compound in a reaction. The magnetically susceptible polymer component includes a polymer and a magnetically susceptible particle of a predetermined size, which yields a component having a much-improved magnetic reactivity due to the increase in magnetic material by mass percentage. The apparatuses and systems of the present invention employ controllable magnetic fields distributable in perpendicular directions in order to precisely control the orientation, position and relative motion of any magnetically susceptible components within a reaction vessel.
Abstract:
A magnetic filtering film is used to remove grains from liquid that goes through the magnetic filtering film. The magnetic filtering film includes a rubber film and micro-magnets. The rubber film is made of organic polymer. The rubber film is formed with apertures through which liquid can go. The micro-magnets are distributed in the rubber film for attracting ferromagnetic grains from the liquid.
Abstract:
The present invention includes a magnetically susceptible polymer component, a method of making the same, and apparatuses and systems for mixing, separating or localizing a magnetically susceptible polymer compound in a reaction. The magnetically susceptible polymer component includes a polymer and a magnetically susceptible particle of a predetermined size, which yields a component having a much-improved magnetic reactivity due to the increase in magnetic material by mass percentage. The apparatuses and systems of the present invention employ controllable magnetic fields distributable in perpendicular directions in order to precisely control the orientation, position and relative motion of any magnetically susceptible components within a reaction vessel.
Abstract:
A continuously operating magnetic particle separating machine includes an inlet for receiving a material having magnetic particles mixed therein, an outlet for discharging the material after the magnetic particles have been separated therefrom, a first flow path extending between the inlet and the outlet, a first magnetic element positionable in the first flow path, a second flow path extending between the inlet and the outlet, and a second magnetic element positionable in the second flow path. The separating machine includes a control system including a diverter valve switchable between a first position for directing the material through the first flow path and a second position for directing the material through the second flow path, whereby the switching frequency of the diverter valve is responsive to a concentration of the magnetic particles in the material.