Abstract:
An arrangement for working a tube end includes: an operating cylinder with a piston displaceable along an longitudinal axis; and a tube mounting, a tool holder being provided at an end of the piston facing the tube mounting. The operating cylinder is provided as a tandem cylinder. At least two cylinder stages are offset along the longitudinal axis. The piston includes connected piston segments, each piston segment being allocated to a cylinder stage.
Abstract:
Provided is a seaming device that makes it possible to easily adjust an axial load applied to a can during seaming and that makes it possible to prevent the buckling of the can without any shock load being applied, apply a constant axial load according to a decrease in the height of the can during the seaming, and achieve the high speed of a seaming process. The seaming device has a can placement unit (110) that places a can (C), a chuck unit (120) provided opposite the can placement unit, and a seaming roll (131) that seams a lid (F) onto the can (C). The can placement unit (110) has a pressing mechanism (111) that operates by fluid pressure and elastically upwardly presses a plate (112) on which the can (C) is placed.
Abstract:
An alignment assembly for a press assembly is provided. The alignment assembly includes a number of alignment elements. The alignment elements include a number of moving alignment elements. The moving alignment elements are coupled to an upper tooling assembly that moves between a first and second position. As the upper tooling assembly moves, the moving alignment elements move between a first position and a second position corresponding to the upper tooling assembly first position and a second position. The moving alignment elements are structured to move the shell from the initial alignment position to an intermediate alignment position. Thus, as the upper tooling assembly moves from the first position to the second position, the moving alignment elements contact a shell and move the shell from an initial alignment position to an intermediate alignment position.
Abstract:
Pipe joint, which is formed from the end portions of pipe sections to be joined together with the portions including a collar, and from flange parts which, as seen from the junction, are placed on different sides of the collars and tightened with applicable fixing members, such as with screws and nuts. The collar of the pipe section is formed from the wall of the end of the pipe section by shaping with a shaping member. The joint surface of the collar of at least one of the pipe sections to be joined is arranged to be divergent by the amount of an angle a, p from the plane perpendicular to the longitudinal axis of the pipe section. A method and to a flange part arrangement are disclosed.
Abstract:
A thermoformer apparatus has sheet supporting rails which are divided into sections hinged together to facilitate widening of the spacing between the rails with adjuster drive mechanism as the sheet moves through an oven to eliminate sagging of the sheet as it becomes heated. Thermoformer chains are driven by a pair of independently operable servo motors each associated with a respective thermoformer chain.
Abstract:
A process and apparatus to make an edge or a collar featuring a complex structure on extruded, deep-drawn and deep-drawn/wire-drawn metal rough pieces with which bottles for the beverage and food sector or for technical use are particularly obtained, suitable for the application of a closing cap and fit to use on a tapering machine. The process includes a starting operating stage to deform an upper end portion of a metal holder by turning it outwardly so as to obtain an edge or a collar with a basically circular section, one or more intermediate operating stages to deform the edge or collar by squeezing in the radial direction and stretching towards the bottom of the metal holder, a final operating deformation stage to obtain an edge or collar with a complex ovoidal profile for the application of at least two caps of different types.
Abstract:
A panel structure is manufactured by: overlapping a second plate member 12 on a first plate member 14 including a panel body 36 and a flange portion 38 continuing from the panel body 36; and bending the flange portion 38 so that the flange portion 38 curves from a boundary portion between the flange portion 38 and the panel body 36 to an end portion 30b of the flange portion 38 to thereby sandwich the second plate member 12 by the first plate member 14.
Abstract:
A method of forming a hollow curled portion on a hollow body, the curled portion being oriented from one end to the other end of the hollow body. The method includes a bending step of curving an end of the hollow body toward another end of the hollow body, thereby forming a curled portion, an ironing step of ironing the curled portion with a die, and a recurving step of stopping the die from ironing the curled portion and allowing the curled portion to recurve under its own resiliency in a direction opposite to the direction in which the end of the hollow body has been curved. The ironing step and the recurving step are repeated.
Abstract:
A process and apparatus to make an edge or a collar featuring a complex structure on extruded, deep-drawn and deep-drawn/wire-drawn metal rough pieces with which bottles for the beverage and food sector or for technical use are particularly obtained, suitable for the application of a closing cap and fit to use on a tapering machine. The process includes a starting operating stage to deform an upper end portion of a metal holder by turning it outwardly so as to obtain an edge or a collar with a basically circular section, one or more intermediate operating stages to deform the edge or collar by squeezing in the radial direction and stretching towards the bottom of the metal holder, a final operating deformation stage to obtain an edge or collar with a complex ovoidal profile for the application of at least two caps of different types.
Abstract:
Disclosed is a device and method for forming a curl in a closable container. A process of forming a pre-curl is used, which is followed by a second separate step of forming the completed curl. The two-step process provides for higher tolerances with respect to the shape of the curl that allows the curl to be used as a sealing surface for a recloseable metal bottle. A three-step process provides for even greater tolerances and reduces longitudinal forces by completing the curl using lateral forces. Also, a die curler is disclosed that has an eccentric motion that forms a curl in a single progressive curling process.