Abstract:
A drill guide device comprising a speed detection device for measuring speed of a drill bit used by the device for drilling an object surface during a hand drilling operation; a force detection device for measuring force applied by the drill bit on the object during the hand drilling operation; an alignment detection device for detecting alignment of the drill bit with respect to the object surface during the hand drilling operation; a user interface connected to the speed detection device, the force detection device and the alignment detection device adapted to communicate to a user information related to the speed, the force and the alignment of the drill bit during the hand drilling operation. The drill guide device is preferably used for training technicians on hand drilling the object surface using a required range of force, speed and alignment, particularly muscle memory training of technicians on these required parameters.
Abstract:
A method for determining hardness information of a component is disclosed. The method comprises forming at least one hole of a predetermined depth at a predetermined location on a surface of the component, measuring the hardness information of the component at the predetermined depth through the hole using one of a probe and a drill, and filling the at least one hole with a filler material.
Abstract:
A drilling apparatus includes: a drill rotatable about a center axis and capable of advancing and retracting along the axis; and a pressing unit for pressing a work in an advancing direction of the drill. The drilling apparatus advances the drill while rotating the drill about the center axis to form a hole in the work, in a state in which the work is pressed by the pressing unit. A pressing force applied on the work by the pressing unit is set to a predetermined pressing force based on machining reaction applied to the drill from the work during drilling and the pressing force causing deformation of the work in the advancing direction of the drill. The predetermined pressing force can suppress deformation of the work and displacement of the drill due to the machining reaction. The machining reaction and the pressing force are calculated beforehand in a drilling test.
Abstract:
Said drilling grid comprises a main body designed to be attached to an aircraft structural part and having through-holes for positioning a machine for drilling the aircraft structural part. It further comprises a wireless communication device configured to communicate with a supervision system and a data processing unit designed to send to the supervision system, via the wireless communication device, information relating to the drilling grid and/or the drilling machine positioned in one of the positioning holes.
Abstract:
A method for drilling an element to be drilled by a drilling device and a cutting tool including drill margins and cutting edges. The method includes determining at least one load value representing overall drag due to internal friction of the drilling device and to friction of drill margins in the element to be drilled. Determining includes: stopping a drilling operation in progress; partial retraction of the cutting tool on a predetermined distance, the predetermined distance being chosen such that the cutting edges are no longer in contact with the element to be drilled; driving the cutting tool with predetermined cutting parameters; measuring at least one load value during the driving of the cutting tool with the cutting parameters before its cutting edges again come into contact with the element to be drilled and after stabilization of the load values, the measured load value representing the overall drag.
Abstract:
A method of determining a depth of a hole formed in a work piece is disclosed. The method includes determining the hole depth based upon a load signal indicative of a load on a tool forming the hole during the forming of the hole. The hole depth determined is then adjusted with an offset and component specifications are combined with the hole length to determine a component specification for use in the hole to fix components together. At least a part of the depth determination and component specification can be carried out automatically in a computer, for an array of holes.
Abstract:
A method for pushing, with a force a tool at the end of an articulated arm against a surface with a normal, including the steps of: positioning the tool against the surface; applying an increasing force to the tool until reaching a value, corresponding to a fraction of the force, the value of the applied force being monitored; measuring the orientation of the tool with respect to the normal, after having reached the force value; and redirecting the tool so as to recover its initial orientation with respect to the normal. Iteration is carried out to proceed, by repetition of steps to, while progressively increasing the force at each iteration, and until reaching the force value, the increase increment between two successive steps being smaller than a determined value.
Abstract:
The invention relates to a tool post of a machine tool, which tool post is capable of receiving a cutting insert for machining a component, characterised in that it comprises at least one sensor capable of determining a parameter representative of a cutting action between a component to be machined and a cutting insert, and a support housing (9) which is electrically connected to the sensor and comprises a battery (17) and a printed circuit board (19) supplied with current by said battery (17), wherein said printed circuit board (19) supports, at least partially, a radio transmission unit (11) and the housing (9) consists of a base (21) and a cover (23) which can be detached from one another, and in that the battery (17) is supported by the cover (23) and the printed circuit board (19) by the base (21) or vice versa.