Abstract:
A method of assembling a tire having one or more reinforcements or supporting inserts in the sidewalls is provided. The reinforcements are positioned onto one or more air impermeable layers. One or more reinforcing plies are positioned over the reinforcing supports and suspended therebetween. A gas pressure is used to expand the one or more air impermeable layers away from the forming drum and against a reinforcing ply. As such, the creases or wrinkles in the one or more reinforcing plies can be avoided along with other non-uniformities such as deradialization and/or an uneven overlap where the ends of a ply are joined.
Abstract:
A body ply turn-up device for turning up at least one width-end portion of a body ply expanded into a toroidal shape includes a plurality of arm components movable in the axial direction of an operating shaft and pivotable radially of the operating shaft. Guide members are respectively supported on an end portion of each arm component and coil springs are interposed in respective spaces between guide members. Elastic members respectively cover the outer surfaces of the coil springs for performing pressing at spaces between spiral wire portions thereof when the arm components are pivoted radially outward of the operating shaft. Alternatively, the guide portions include portions which are smaller than the inner diameter of the coil spring and which extend to positions nearly touching each other at a center in a lengthwise direction of each coil spring in a state that the arm components are contracted.
Abstract:
A device for turning a carcass band is used for a method of producing a green tire which enable to securely wrap and hold end portions of a carcass band, which is to be wrapped around a bead ring, as desired without a need for restraining the end portions on the bead ring by means of an auxiliary restraining member or the like. In this device, anvil rings having diameters smaller than that of the rigid core are arranged adjacent to respective side portion of a rigid core having an outer contour corresponding to an inner contour of a product tire. The anvil rings are fixed on a rotational driving shaft of the rigid core, and are provided with two annular grooves on their circumferences. Rotation disks for pressing a carcass band into the annular grooves of the anvil rings are arranged so as to approach to and recede from the anvil ring.
Abstract:
Using a core manufacturing method, a green tire is obtained in which edge portions of a carcass ply are turned up at bead cores. An inner liner 40 is set on an external surface of a hard core 12, and a carcass 46 is formed thereon. A bladder 36 disposed inside the core is inflated, whereby edge portions of the carcass 46 can be turned up. Thereafter, conventionally known tire structural members such as a belt, a side tread and a top tread are set on, and a green tire is completed on the external surface of the hard core 12.
Abstract:
A carcass structure for a vehicle wheel tyre includes at least one carcass ply comprising thread elements substantially disposed transversely of a circumferential extension of the carcass structure, and at least one pair of annular reinforcing structures disposed close to respective inner circumferential edges of the at least one carcass ply. Each of the annular reinforcing structures includes at least one first circumferentially-inextensible annular insert formed of at least one first elongated element extending in concentric coils, and at least one second circumferentially-inextensible annular insert formed of at least one second elongated element extending in concentric coils. The at least one carcass ply has end flaps each turned back around an inner circumferential edge of a respective first annular insert and each axially interposed between respective first and second annular inserts. A method of manufacturing the carcass structure is also disclosed.
Abstract:
A tyre for a vehicle wheel includes a carcass structure, a belt structure, a tread band, and sidewalls. The carcass structure includes at least one first and second carcass ply and a pair of annular reinforcing structures. The carcass plies are formed of strip sections extending in a substantially U-shaped conformation, including at least two parallel thread elements at least partly coated with elastomer material. The at least one first (second) carcass ply includes a first (third) and second (fourth) series of strip sections arranged in mutually-alternating sequence along a circumferential extension of the carcass structure. The annular reinforcing structures include first and second primary portions. The first (second) primary portion includes an axially-inner side turned towards end flaps of the strip sections of the first (third) series and an axially-outer side turned towards end flaps of the strip sections of the second (fourth) series.
Abstract:
A method of manufacturing a carcass structure for vehicle tyres includes preparing strip sections, each comprising longitudinal and parallel thread elements coated at least partly with at least one layer of raw elastomer material. A first series of strip sections is laid down onto a toroidal support. First primary portions of annular reinforcing structures are applied against end flaps of the first series strip sections. At least one second series of strip sections is laid down onto the toroidal support. Together, the first and second series define a first carcass ply. A third series of strip sections is laid down onto the toroidal support. Second primary portions of the annular reinforcing structures are applied against end flaps of the third series strip sections. At least one fourth series of strip sections is laid down onto the toroidal support. Together, the third and fourth series define a second carcass ply.