Abstract:
A method for manufacturing a tyre is provided, in particular a run-flat tyre. The method includes providing a drum with a first shrink section and a second shrink section. Each shrink section is provided with a shrink surface that is radially movable. The method includes moving the shrink surfaces radially inwards with respect to the central axis from a level position to a shrink position in which the drum, at the shrink surfaces, has a circumference with a second diameter that is smaller than the first diameter, while creating a partial vacuum between the shrink surfaces and a first tyre layer at the first shrink section and the second shrink section. The method further includes shrinking the first tyre layer onto the shrink surfaces in the shrink position under the influence of the partial vacuum. A drum for use in the aforementioned method is also disclosed.
Abstract:
On a building drum, anchoring structures to beads, carcass plies, a belt structure and/or other annular composite components are sequentially assembled with a liner, sidewalls, sidewall inserts, under-belt inserts or other annular elastomer components. Each of the sidewall inserts, sidewalls, or under-belt inserts is made as a one piece construction in a service station operating far away from the building drum for storage on a movable storing device. Actuating members operating on the movable storing device carry the annular elastomer components from the service station to the building drum. A transfer member picks up the annular elastomer components from the movable storing device to transfer them to the building drum.
Abstract:
Assembly drum of variable diameter D, intended for the manufacture of a tire blank, the drum having a generally cylindrical laying surface (2) provided with circular grooves (3) arranged axially in a zone intended to receive profiled elements of great thickness, said groove (3) containing elastic circumferential bodies (4). When the drum D is moved to a first laying diameter, a mechanical means moves the elastic body (4) radially apart from the bottom of the groove, so as to align the radially outer surface of the elastic body (4) with the laying surface of the drum (2).
Abstract:
A pneumatic tire is capable of operation during underinflated condition and the construction of sidewalls are configured to compensate for negative cambers acting upon the tire. The inboard side of the tire is softened in comparison to the outboard side of the tire. This is achieved by either forming an asymmetrical tire in either the tire profile or the internal construction.
Abstract:
A self-supporting tyre for a vehicle wheel includes a carcass structure, a belt structure, a tread band, a pair of sidewalls, and at least one elastic stiffening insert. The carcass structure includes at least one carcass ply provided with end flaps engaged with respective annular reinforcing structures. The annular reinforcing structures are disposed in coaxial relationship with a geometric rotation axis of the tyre at positions axially spaced apart from each other. Each annular reinforcing structure includes at least one first circumferentially inextensible annular anchoring insert. The at least one elastic stiffening insert is incorporated into the carcass structure, at least at one of the sidewalls, and includes a radially internal end portion at least partly disposed in axial side-by-side relationship against the at least one first annular anchoring insert. A method of making the tyre is also disclosed.
Abstract:
An expandable tire building drum, having alternating fixed (226, 326, 426) and expanding (228, 328, 428) segments (e.g., 24 of each) in a center section (220, 320, 420) of the drum. The expanding segments are axially-extending and circumferentially spaced from one another, and are contoured (have recesses, or grooves) to accommodate tire components such as sidewall inserts. Two different mechanisms for expanding the center section are described. A first mechanism includes two wedge elements (358) which are axially moveable away from one another to expand the center section. Ramp elements (348) associated with the expanding segments (328) may thus be moved radially outward. Rubber bands (358) provide a restoring force for collapsing the center section. A second mechanism includes two guide rings (458) which are axially moveable towards one another for expanding the center section, and away from one another to collapse the center section. Overlapping links (462, 464) are provided between the guide rings and a support element (448) supporting the expanding segments (428).
Abstract:
There is provided a method of producing a tire wherein various green case constituent members and so on having various shapes and sizes may be formed simply, rapidly and accurately in the building of a green tire and a building operation efficiency of a green tire is enhanced and a uniformity, a balance and the like of a product tire are improved. According to this method, a green case constituent member or a part thereof is formed by spirally winding a strip of an uncured rubber on an outer circumferential side of a building drum and a green case after the building of the green case is shaped and a belt and a tread are attached onto an outer circumferential side thereof.
Abstract:
A tire 10 has a composite ply 40. The composite ply 40 has a primary ply 40A reinforced with parallel inextensible cords 41 and a pair of ply extensions 40B having synthetic cords. The method of manufacturing the tire 10 is described. The tire 10 can be made as a runflat type tire.
Abstract:
A run-flat pneumatic radial tire is equipped with a prestressed helical coil which is positioned inside the tire crown radially inwardly of the tread thereof. The coil is wound to approximately 50 percent of its free diameter to prestress it and the outer surface has a resin-impregnated tape applied thereto. The tape serves to hold the coil in a predetermined condition while the taped coil is cured. The taped coil can be co-cured in situ with the tire or prepared in advance of tire fabrication.
Abstract:
A tire includes at least one body defining a plurality of body ply layers, and a toroidal element located between the body ply layers. The toroidal element includes inner and outer regions formed by the body ply layers, and a central region formed by an inner rubber component located between the body ply layers. At least a portion of the central region is more elastic than the inner and outer regions. The toroidal element includes a first sidewall portion extending along at least a portion of the first sidewall region of the tire, and a second sidewall portion extending along at least a portion of the second sidewall region of the tire. The toroidal element is pre-stressed such that the first sidewall portion of the toroidal element exerts a first axially outward force, and such that the second sidewall portion of the toroidal element exerts a second axially outward force.