Abstract:
An object is to provide a master cylinder that ensures the responsivity during brake actuation, improves a release delay during brake release, ensures the responsivity during automatic braking, and quickly releases the residual pressure in the hydraulic chamber.The master cylinder includes a cylinder body having a cylinder hole, a piston slidably inserted into the cylinder hole, the piston partitioning a hydraulic chamber, a communicating passage provided in the cylinder body, the communicating passage communicating with a reserver, a relief port formed in the piston, the relief port performing communication between the communicating passage and the hydraulic chamber, and a seal member housed in a recess portion in an inner peripheral surface of the cylinder hole of the cylinder body, the piston slidably passing through the seal member, the seal member performing sealing between the inner peripheral surface of the cylinder hole and an outer peripheral surface of the piston, the communicating passage communicating with the relief port during non-actuation, the piston moving to block the communicating passage from the relief port using the seal member during actuation, in which a flow passage control member for opening and closing the relief port is provided in a part of the relief port close to the hydraulic chamber.
Abstract:
A master cylinder assembly of the type comprises a housing (20) disposed along an axis (A) defining a chamber (22) having a cylindrical shape extending horizontally between an open end and a closed end. A first cylinder (42) and a second cylinder (44) are disposed for sliding movement axially along the axis. Each of the cylinders includes a cylindrical wall (48) defining a cylindrical bore (52). A piston (56) is disposed in each of the cylindrical bores. The cylindrical wall of each cylinder includes a cylinder ramp (70) to define a cylinder ramp shoulder (74). Each piston includes a piston ramp (76) to define a piston ramp shoulder (80). The piston ramp shoulder (80) of each piston and the cylinder ramp shoulder (74) of each cylinder radially engage one another in an assembled position to allow the cylinders (42, 44) and the pistons (56) to abut one another during the sliding movement axially along the axis within the chamber of the housing.
Abstract:
A master cylinder for a regulated braking system having at least one piston, which is movable in a housing and which is sealed from a pressure chamber by a sealing element arranged in a ring groove of the housing, which can be connected to an unpressurized supply chamber by control passages designed in the pistons. In order to reduce the flow resistance of the control passages at the same dead stroke, the control passages have a control edge designed parallel to a piston end face of at least one of the pistons.
Abstract:
An electric brake system is disclosed. The electric brake system comprises an electronic control unit configured to control a hydraulic pressure supply device and valves on the basis of hydraulic pressure information and pedal displacement information and including a circuit board on which a plurality of electronic elements are mounted, and the hydraulic pressure supply device configured to generate hydraulic pressure using a rotational force of a motor that is activated in response to an electrical signal output from the electronic control unit, wherein the circuit board and a housing of the hydraulic pressure supply device contact each other to transfer heat generated at the plurality of electronic elements to the housing of the hydraulic pressure supply device.
Abstract:
Disclosed herein is a master cylinder for a brake system. The master cylinder for a brake system comprises a cylinder body in which a bore is formed, at least one piston provided to be movable forward and backward in the bore, a hydraulic chamber pressurized by the piston, an oil port connected to a reservoir and configured to supply oil to the hydraulic chamber of the cylinder body, and a sealing member installed in the cylinder body and configured to block a flow of oil between the oil port and the hydraulic chamber according to a movement of the piston, wherein the piston includes a piston groove having an inclined surface in contact with the sealing member and a plurality of piston holes formed along an outer circumferential surface of the piston groove configured to communicate the oil port with the hydraulic chamber.
Abstract:
A brake fluid reservoir is connected to a master cylinder by a neck which is arranged in an upper chamber of the master cylinder. Holes extend through a surface of a piston, opening to a pressure chamber. The piston extends through a bore hole of the master cylinder. A drill hole extends through an interior wall of the master cylinder, opening into the bore hole, thereby providing communication between the fluid reservoir and the pressure chamber. A floating orifice plate is arranged within the upper chamber, between the neck of the brake fluid reservoir chamber and the drill hole, such that the orifice plate forms a baffle that limits a flow rate of liquid from the brake fluid reservoir chamber to the pressure chamber; and includes supports pressing against a surface of the interior wall of the master cylinder and arranged around the first side of the drill hole.
Abstract:
A primary piston composed of a skirt and an intermediate back wall having a rear face receiving the servobrake thrustrod and a forward face for the telescoping rod and the spring pushing the secondary piston. The front of the skirt has longitudinal grooves open in front and closed in the rear. The thickness of the skirt beneath the grooves and the part of the skirt between two successive grooves in the peripheral direction foam a front face enabling the principal piston to push the secondary piston. The principal piston is made of a single piece of plastic material.
Abstract:
In a master cylinder, a supply passage for supplying operating liquid from a reservoir (2) to a pressure chamber (6) is provided in a cylinder body (3) coupled with the reservoir. A bypass passage (37) for bypassing the supply passage and connecting the reservoir and the pressure chamber is further provided, and a check valve (34) adapted to open when a pressure in the pressure chamber is lower than that in the reservoir is disposed in the bypass passage. A valve case (38) containing a valve body (41) of the check valve includes a valve seat (40) and a cylindrical wall (45) for slidably guiding the valve body which are integrally formed as a single member.
Abstract:
A fluid pressure booster and a fluid pressure brake apparatus having the same are provided. The fluid pressure booster includes an auxiliary fluid pressure source having a pump and a pressure accumulator, a pressure adjusting device which adjusts fluid pressure supplied from the auxiliary fluid pressure source to a value corresponding to an operating amount of a brake operation member by displacement of a spool valve and introduces the same into a boost chamber, a boost piston which receives the fluid pressure introduced into the boost chamber to generate assist force and operates a master piston of a master cylinder by assisted force, and a displacement absorption member which is provided at a position to which thrust force of the master piston is applied, and which is compressed in an axial direction when transfer power between the boost piston and the master piston exceeds a setting value.
Abstract:
A brake master cylinder of the invention is to dispose a main oil cylinder and an oil storing space on a handlebar base. In addition, a sleeve engaged with the main oil cylinder is disposed in the oil storing space. The one end of the oil storing space has a fastening seat passed by a draw bar linked to the brake handlebar, and a positioning sheath of the fastening seat is utilized to engage with the sleeve. A leakage prevention component is disposed between the fastening seat and the handlebar base. A bushing integrally extended from the leakage prevention component is utilized to encapsulate the positioning sheath of the fastening seat and the sleeve. Accordingly, the brake master cylinder having convenient assembly and better sealing effect for hydraulic oil is obtained.