摘要:
Disclosed here are inventive systems and methods for a powertrain of an electric vehicle (EV). In some embodiments, said powertrain includes a continuously variable transmission (CVT) coupled to an electric drive motor, wherein a control system is configured to control the CVT and/or the drive motor to optimize various efficiencies associated with the EV and/or its subsystems. In one specific embodiment, the control system is configured to operate the EV in an economy mode. Operating in said mode, the control system simultaneously manages the CVT and the drive motor to optimize the range of the EV. The control system can be configured to manage the current provided to the drive motor, as well as adjust a transmission speed ratio of the CVT. Other modes of operation are also disclosed. The control system can be configured to manage the power to the drive motor and adjust the transmission speed ratio of the CVT taking into account battery voltage, throttle position, and transmission speed ratio, for example.
摘要:
Construction of an electric automobile drive apparatus is realized in which the relationship of the traveling speed and acceleration of a vehicle can be made smooth and closer to the ideal, and the transmission efficiency can be maintained. A bypass gear-transmission mechanism 10, a toroidal continuously-variable transmission 11, a first planetary-gear mechanism 12 and a second planetary-gear mechanism 13 are arranged parallel to each other in the power transmission direction between a driving-side rotating shaft 4a that is the input shaft and a driven-side rotating shaft 5a that is the output section and that is arranged parallel to the driving-side rotating shaft 4a. A first clutch mechanism 16 is provided between the bypass gear-transmission mechanism 10 and the driven-side rotating shaft 5a, and a second clutch mechanism 44 and third clutch mechanism 49 are provided between the output gear 38 of the toroidal continuously-variable transmission 11 and first planetary-gear mechanism 12 and second planetary-gear mechanism 13.
摘要:
Disclosed here are inventive systems and methods for a powertrain of an electric vehicle (EV). In some embodiments, said powertrain includes a continuously variable transmission (CVT) coupled to an electric drive motor, wherein a control system is configured to control the CVT and/or the drive motor to optimize various efficiencies associated with the EV and/or its subsystems. In one specific embodiment, the control system is configured to operate the EV in an economy mode. Operating in said mode, the control system simultaneously manages the CVT and the drive motor to optimize the range of the EV. The control system can be configured to manage the current provided to the drive motor, as well as adjust a transmission speed ratio of the CVT. Other modes of operation are also disclosed. The control system can be configured to manage the power to the drive motor and adjust the transmission speed ratio of the CVT taking into account battery voltage, throttle position, and transmission speed ratio, for example.
摘要:
There is described a controller for motor vehicle drive train comprising an engine and a continuously variable ratio transmission providing geared neutral, the controller serving to set demands for wheel torque and engine speed in dependence upon a driver input, characterised in that the controller is adapted to respond to input from the driver indicative of a requirement for an engine speed increase prior to vehicle launch by raising engine speed while implementing a reduced wheel torque strategy, and to subsequently raise wheel torque following input from the vehicle driver by which launch is initiated.
摘要:
There is described a controller for motor vehicle drive train comprising an engine and a continuously variable ratio transmission providing geared neutral, the controller serving to set demands for wheel torque and engine speed in dependence upon a driver input, characterised in that the controller is adapted to respond to input from the driver indicative of a requirement for an engine speed increase prior to vehicle launch by raising engine speed while implementing a reduced wheel torque strategy, and to subsequently raise wheel torque following input from the vehicle driver by which launch is initiated.
摘要:
A method for controlling a continuously variable ratio transmission is described. The method may include controlling a continuously variable ratio unit (“variator”) having rotary input and output members through which the variator is coupled between an engine and a driven component, the variator receiving a primary control signal and being constructed and arranged to exert upon its input and output members torques which correspond directly to the control signal. The method may also include determining a target engine acceleration, determining settings of the variator's primary control signal and of an engine torque control for providing the required engine acceleration and adjusting the control signal and/or the engine torque control based on these settings, predicting a consequent engine speed change, allowing for engine and/or transmission characteristics, and correcting the settings of the control signal and engine torque based on a comparison of actual and predicted engine speeds.
摘要:
A vehicle drive control device includes a continuously variable transmission mechanism (hereinafter referred to as CVT (6) of a torque control type capable of continuously varying a transmission gear ratio, and a controller (34) which controls operations of the CVT (6) and an engine (2). The controller (34) includes a first control section (43; 43A) which controls a torque of the CVT (6) based on a target transmission input torque (TTRN,T), and a second control section (44) which controls a torque of the engine (2) based on a target engine rotation speed (ωe,T).
摘要:
A vehicle drive control device includes a continuously variable transmission mechanism (hereinafter referred to as CVT (6) of a torque control type capable of continuously varying a transmission gear ratio, and a controller (34) which controls operations of the CVT (6) and an engine (2). The controller (34) includes a first control section (43; 43A) which controls a torque of the CVT (6) based on a target transmission input torque (TTRN,T), and a second control section (44) which controls a torque of the engine (2) based on a target engine rotation speed (ωe,T).
摘要:
The invention is concerned with control of a motor vehicle powertrain having a transmission of torque-controlled type. The powertrain also has an engine which provides a controllable engine torque. The method involves determining a reaction torque requirement and an engine torque requirement suitable to create a desired wheel torque and also a desired engine acceleration. The engine torque and the reaction torque provided by the transmission are set accordingly. The invention is characterised by the fact that the aforementioned calculation involves estimating and allowing for vehicle acceleration.
摘要:
An infinite speed ratio continuously variable transmission is provided with a continuously variable transmission (2), fixed speed ratio transmission (3), planetary gear set (5), power recirculation clutch (9) and direct clutch (10). A target speed ratio of the infinite speed ratio continuously variable transmission is set based on a vehicle speed and an accelerator pedal depression amount. When the target speed ratio varies beyond a rotation synchronous point, a control unit (80) assigns an order of priority to control of the power recirculation clutch (9) and direct clutch (10), and control of the speed ratio of the continuously variable transmission (2), and thereby causes a real speed ratio of the infinite speed ratio continuously variable transmission to vary in the same direction until it reaches the target speed ratio (S21, S22, S31, S32, S121, S122).