Abstract:
A method for operating an elevator installation includes receiving a destination call of a passenger at a control unit and selecting an elevator car from a set of available elevator cars for transporting the passenger. The elevator car is selected such that elevator car spacing rules are observed. The method further includes determining an arrival time of the selected elevator car at the boarding floor, and determining a first arrival time of the passenger at an elevator landing corresponding to the selected elevator car on the boarding floor. The method includes directing, under the proviso that the first arrival time of the passenger at the elevator landing precedes the arrival time of the selected elevator car by a defined margin, the passenger to a waiting zone of a set of available waiting zones. The waiting zone is selected such that waiting zone spacing rules are observed.
Abstract:
Embodiments of the present invention provide a method, system and computer program product for smart elevator car destination management according to probabilistic destination determination. In an embodiment of the invention, a method for smart elevator car destination management according to probabilistic destination determination includes predicting a set of passengers requesting use of an elevator car in a bank of elevator cars in a building and determining a probability for each of the passengers that each passenger will select as a destination a particular floor in the building. The method also includes grouping ones of the passengers in the set according to a common floor determined to be probable for the grouped ones of the passengers. Finally, the method includes displaying in connection with the bank of elevator cars an assignment of the grouped ones of the passengers to one of the elevator cars in the bank.
Abstract:
Embodiments of the present invention provide a method, system and computer program product for smart elevator car destination management according to probabilistic destination determination. In an embodiment of the invention, a method for smart elevator car destination management according to probabilistic destination determination includes predicting a set of passengers requesting use of an elevator car in a bank of elevator cars in a building and determining a probability for each of the passengers that each passenger will select as a destination a particular floor in the building. The method also includes grouping ones of the passengers in the set according to a common floor determined to be probable for the grouped ones of the passengers. Finally, the method includes displaying in connection with the bank of elevator cars an assignment of the grouped ones of the passengers to one of the elevator cars in the bank.
Abstract:
A method of operating an elevator installation for transporting elevator users in a building area, including the steps of: detecting the position of elevator users in the building area, granting of an access authorization of the elevator users to building regions, triggering of a destination call by a detected elevator user, allocation of an elevator car serving the destination call or elevator call, boarding of an elevator car by at least one detected elevator user, if an elevator call was triggered triggering a car call by a detected elevator user, comparing whether the position of the elevator user that has boarded the elevator car corresponds with the position of the elevator user that has triggered the destination call, and determining whether the elevator user that has boarded the elevator car has an access authorization for a destination location corresponding with the destination call or elevator call.
Abstract:
A group control device according to the present disclosure includes a registration unit, a calculation unit, and a selection unit. The registration unit makes call registration for a boarding floor, a destination floor, and an allocated car when a user makes a hall destination call by a hall destination calling device. The calculation unit calculates an in-car stay time of the user for the hall destination call. The selection unit selects a past hall destination call as an alternative candidate for call registration for a new hall destination call, in a case where the past hall destination call which has already been registered by the registration unit, whose allocated car is different from a car allocated to the new hall destination call, and whose in-car stay time is shorter than the in-car stay time calculated by the calculation unit.
Abstract:
The disclosure herein includes a method for controlling elevators by an intelligent building system. The method includes receiving, by the intelligent building system, elevator calls initiated by passengers. Each elevator call can include a passenger identification corresponding to a passenger initiating the elevator call. The method further includes procuring passenger preference information based on the passenger identifications in response to the elevator calls and grouping the passengers with respect to the passenger preference information to produce passenger groups. The method further includes controlling the elevators to collect the passenger groups.
Abstract:
A ropeless elevator system (10) includes a plurality of elevator cars (14) configured to travel in a hoistway having at least one lane (13, 15, 17), a propulsion system (16, 18) to impart force to each elevator car of the plurality of elevator cars, and a controller (46). The controller is configured to operate in an in-group mode where the plurality of elevator cars perform service demands, and to selectively operate in an out-of-group mode where at least one selected elevator car of the plurality of elevator cars performs a predetermined task and is prevented from performing the in-group mode service demands.
Abstract:
An elevator system which utilizes a plurality of independently moving cabs in each elevator shaft. The lower cabs are connected to spatially separated counterweights in order to prevent interference between cables, pulleys and counterweights. The top cab may be connected to one or two counterweights by connection points on the roof of the cab. The cabs are mounted on tracks, to guide each cab through the elevator shaft. The system includes a motor attached to each of the cabs by lift cables to facilitate the independent movement of all cabs. Existing buildings can be retrofit for compatibility with the present invention. A system and method for controlling the motions of all cabs comprising determining and selecting an optimal cab and a best hoistway range to service passenger requests.
Abstract:
According to an aspect, there is provided a method and an apparatus. In the solution, an elevator call indication associated with a user is obtained. First guidance information is caused to be provided for the user to proceed to a waiting area. Location data associated with the user is obtained, the location data providing information about the location of the user. An elevator car is allocated in response to the elevator call indication, wherein the allocation takes into account the location of the user.
Abstract:
Devices, methods and computer programs for elevator call allocation with stochastic multi-objective optimization are disclosed. At least some of the disclosed embodiments allow an elevator group control to take into account knowledge about possible future passenger arrivals when allocating new calls. At the same time, the new elevator calls can be allocated via optimizing multiple objectives, such as the waiting time, the time to destination, and/or the energy consumption. In other words, the invention makes it possible to both take into account the uncertainty related to future passengers and control the trade-off between different optimization objectives.