摘要:
The present disclosure relates to a process for the decarbonation of limestone, dolomite or other carbonated materials. The process may include heating particles of carbonated materials in a reactor of a first circuit to obtain decarbonated particles. Particles of carbonated materials are conveyed by a first entraining gas in the first circuit for preheating. The gas includes the carbon dioxide, the gas composition being substantially free of nitrogen. The carbonated particles are separated from a first entraining gas flow. The decarbonated particles are transferred to a cooling section of a second circuit having a second entraining gas in which the conveyed decarbonated particles release a portion of their thermal energy. The decarbonated particles are separated from a second entraining gas flow. The second entraining gas is substantially free of carbon dioxide.
摘要:
Magnesium phosphate cement binder systems and method for providing magnesium phosphate cements are described. In an embodiment, a magnesium phosphate cement binder system may include magnesium oxide that has been calcined at a temperature of between about 900° F. to about 1800° F. The magnesium phosphate cement binder system may also include a phosphate material. Other formulations, compositions, and methods are also described.
摘要:
The present invention provides a process for producing high purity hydromagnesite from a source of magnesium chloride. The process involves preparation of a magnesium chloride brine of a specific concentration and reacting with sodium carbonate, while maintaining the reaction at a specific temperature range to form a hydromagnesite precipitate. The product can be calcined to generate high purity magnesium oxide compounds.
摘要:
The present invention provides a process for producing high purity hydromagnesite from a source of magnesium chloride. The process involves preparation of a magnesium chloride brine of a specific concentration, which is ammoniated at a specific temperature range, followed by carbonation, while maintaining the reaction at a specific temperature range to form a hydromagnesite precipitate. The product can be calcined to generate high purity magnesium oxide compounds.
摘要:
The present invention teaches the method to use the sulfate or sulfites based raw materials, such as magnesium, calcium and other alkative earth sulfates or sulfites to produce the respective oxides in a carbon five basis, by using sulfur as the fuel and the reductant. The invention also utilizes renewable energy such as solar thermal or green electricity wherever possible. This approach provides a green process, of ultra-low carbon dioxide emission, for the production of magnesium, other alkaline earth metals and other material which requires alkaline earth oxide, such as in the production of carbon free Portland cement requiring lime. The invention also provides a useful outlet for waste streams leading to sustainable processes. The cost of the production of these precursors are kept low by concurrently producing a saleable by-product—sulfuric-acid.
摘要:
A material compound comprising MgO. CaCO3 comprising granules of a size distribution between as a solid solution of MgO and CaCO3. and a method of fabricating the same.
摘要:
A reaction product of at least one of magnesium carbonate and magnesium silicate, with a metal chloride at a temperature exceeding 300.degree. C. Such a product, when mixed with water, sets to be an immensely strong magnesium cement. It may have aggregates of various types mixed with it.
摘要:
Particulate magnesium oxide prepared by calcining magnesium oxide at between about 1100.degree. C. and about 1500.degree. C. At least about 80% of the magnesium oxide particles are between about 150 microns to about 400 microns in diameter. This magnesium oxide is capable of producing expansion in set cements when the temperature thereof is at least about 60.degree. C. Preferably the magnesium oxide has been calcined at between about 1100.degree. C. to about 1300.degree. C. for about 1 to about 3 hours, and at least about 80% of the particles are between about 200 microns to about 325 microns. Further, the BET surface area of the particles is preferably between about 0.8 to about 1.8 m.sup.2 /g, and the acid neutralization time (using the method described) is between about 15 to 20 minutes, and further preferably between about 17 to about 25 minutes. Expandable cement compositions using such magnesium oxide, and a method of using them in cementing of wells, are also disclosed.