Abstract:
The invention relates to a process to prepare a microcrystalline wax and a middle distillate fuel by (a) hydrocracking/hydroisomerizing a Fischer-Tropsch product, wherein the weight ratio of compounds having at least 60 or more carbon atoms and compounds having at least 30 carbon atoms in the Fischer-Tropsch product is at least 0.2 and wherein at least 30 wt % of compounds in the Fischer-Tropsch product have at least 30 carbon atoms, (b) performing one or more distillate separations on the effluent of step (a) to obtain a middle distillate fuel fraction and a microcrystalline wax having an initial boiling point of between 500 and 600° C.
Abstract:
The present invention relates to a catalyst which consists of a combination of zeolite and platinum or palladium on aluminum oxide. The catalyst is suitable for converting solid Fischer-Tropsch paraffins into microcrystalline waxes.
Abstract:
A method for reactivating the catalyst used in the mild hydrotreating of petroleum crude scale wax comprises contacting the catalyst with the feedstream at a temperature in excess of the normal operating temperature for the particular feedstream for a time sufficient to reactivate the catalyst and produce effluent having satisfactory color and stability characteristics. Operation at a temperature in excess of the normal operating temperature may follow conventional air-stream catalyst regeneration.
Abstract:
Paraffins and waxes are produced from a gaseous feed stream comprising hydrogen and carbon monoxide in a Fischer-Tropsch reactor using a fixed bed of reduced Fischer-Tropsch catalyst having cobalt as catalytically active metal. A nitrogen-containing compound is added to the gaseous feed stream in a concentration of up to 10 ppmV and the mixture if fed to the reactor to obtain paraffins having from 5 to 300 carbon atoms. The product is subjected to a hydrogenation step, to obtain a hydrogenated fraction comprising 5 to 300 carbon atoms. The hydrogenated product is separated into C5-C9, C10-C17, and C18-300 fractions. The C18-C300 fraction is separated to obtain one or more first light waxes having a congealing point in the range of 30 to 75° C. and a second heavy wax having a congealing point in the range of 75 to 120° C.
Abstract:
Microcrystalline paraffin having a consistency in a rage of paste-like to solid, prepared by catalytic hydroisomerization of FT paraffins having a carbon chain length distribution in a range of 20 to 105 at temperatures above 200° C., and being free of aromatic compounds, heterocyclic compounds, and naphthenes.
Abstract:
A process to prepare a first middle distillates fraction, a second middle distillates fraction, a distillate base oil and a residual base oil by providing a Fischer-Tropsch product stream; separating the Fischer-Tropsch product stream to obtain at least a low boiling fraction, boiling below a temperature ranging from 300 to 450° C., and a high boiling fraction, boiling above a temperature ranging from 300 to 450° C.; subjecting the high boiling fraction to a hydrocracking/hydroisomerization step to obtain a partially isomerised product stream; separating the partially isomerised product stream to obtain a first middle distillates fraction, a heavy distillates fraction and a residual fraction, the residual fraction having a T5 wt. % boiling point between 400 and 650° C.; dewaxing the low boiling fraction to obtain a second middle distillates fraction; dewaxing the heavy distillates fraction to obtain a distillate base oil; and dewaxing the residual fraction to obtain a residual base oil.