Abstract:
A method and apparatus for recovering embryos from embryonated eggs wherein the egg is cracked open the shell discarded and the contents dropped onto a continuously vibrating screen which separates the embryo from the yolk sac and accompanying fluid. This associated material, which is less cohesive than the embryo, passes through the screen. The screen itself is tilted at a compound angle from the horizontal and its vibrating action causes the embryos to move along the upper surface of the screen toward a discharge chute located at the lower corner of the screen.
Abstract:
A multi-site in ovo injection apparatus and related methods for treating live eggs is disclosed. The multi-site injection apparatus includes one or more injection delivery devices which are configured to deliver multiple treatment substances to predetermined areas of eggs. The treatment substances can be provided so that they are spatially and/or temporally separate. The devices and methods enable the effective use of a plurality of treatment substances even those that are effective when used alone but can be noxious if mixed.
Abstract:
Automated means are provided to harvest virus at a time when the yield is optimized and store the harvest with minimum loss thereby eliminating difficulties when the optimum yield time does not fall within normal working hours, enhancing sterility by limiting human contact and enhancing stability of the product.
Abstract:
Avian embryos may be cultured in vitro up to blastoderm formation, during embryonic morphogenesis and/or during embryonic growth to hatch. The invention may have applications not only in the genetic engineering of poultry, but also in the investigation of fundamental mechanisms of avian development and in the study of deleterious traits. Moreover, it may afford a desirable alternative to surgical intervention in the laying hen.
Abstract:
There is disclosed an apparatus and a system for automating the handling of eggs in the various steps of virus production in eggs containing a living embryo. Manual handling of individual eggs is avoided by keeping the eggs in trays, and eight eggs are automatically processed at one time in candling, sterilizing, hole punching, inoculating and sealing the eggs prior to incubation. After incubation the eggs are similarly handled and processed, eight at a time, in candling, chopping off the tops of the eggs, harvesting the extra-embryonic fluids from the eggs, and finally discarding the remainder of eggs.
Abstract:
A device to inject a composition into an egg includes a guide member, a first locking member and a second locking member. The guide member includes an outer casing secured to the injection needle and an inner casing which can move in translation inside the outer casing. The inner casing connected to the trocar and comprising a cup configured to bear on the upper part of the egg. The first locking member configured to block the movement of the trocar. The second locking member configured to block the movement of the injection needle inserted into the trocar.
Abstract:
An improvement to a functional module for the selective application of substances inside fertile eggs represents an inventive solution in the field of poultry fanning, in particular in the field of poultry breeding, and more specifically in the step of application of vaccines and/or nutrients into fertile eggs by injection, this improvement reducing the risk of violation of biological safety, and ensuring the integrity and survival of the embryo (Em), limiting intra-ovum nutritional supplementation to the amniotic fluid (Li) only, without contact of the needle (a13) with the embryo (Em), and to achieve this condition the module for the selective application of substances inside fertile eggs (Ov) has a structure composed of an injector selector submodule (m1), a selective operation actuation submodule (m2), a speed control submodule (m3) and a common perforator/needle return submodule (m4).