Evaluation method of residual stress in water jet peening and method of executing water jet peening
    2.
    发明授权
    Evaluation method of residual stress in water jet peening and method of executing water jet peening 有权
    喷水喷丸硬化残余应力评价方法及喷水喷丸喷丸处理方法

    公开(公告)号:US08776565B2

    公开(公告)日:2014-07-15

    申请号:US13036223

    申请日:2011-02-28

    IPC分类号: C21D7/06

    摘要: An evaluation method of residual stress in water jet peening includes a step of creating an analytical model including meshes according to a water jet peening (WJP) object, the shape of a nozzle, and an injection distance, a step of inputting WJP execution conditions, a step of calculating the internal pressure pBi of a cavitation bubble and a bubble number density ngi through jet flow analysis for a jet flow jetting from the nozzle, a step of calculating cavitation energy according to the internal pressure pBi of a cavitation bubble and a bubble number density ngi (S4), a step of calculating the burst energy of cavitation bubbles from the cavitation energy C, and a step of calculating the compressive residual stress of the WJP object from the collapse pressure of cavitation bubbles. Accordingly, the residual stress of the WJP object can be evaluated precisely in a shorter time.

    摘要翻译: 水喷射喷丸硬化的残余应力的评价方法包括:创建包括水喷射喷丸(WJP)对象的网孔,喷嘴形状和喷射距离的分析模型的步骤,输入WJP执行条件的步骤, 通过从喷嘴喷射的喷射流的喷射流分析来计算空化气泡的内部压力pBi和气泡数密度ngi的步骤,根据空化气泡和气泡的内部压力pBi计算空化能量的步骤 数值密度ngi(S4),从空化能量C计算空化气泡的爆发能量的步骤,以及从空化气泡的塌陷压力计算WJP物体的压缩残余应力的步骤。 因此,可以在更短的时间内精确地评估WJP物体的残余应力。

    Fire-resistant steel material superior in HAZ toughness of welded joint and method of production of same
    3.
    发明授权
    Fire-resistant steel material superior in HAZ toughness of welded joint and method of production of same 有权
    焊接接头HAZ韧性优良的耐火钢材料及其制造方法

    公开(公告)号:US08323561B2

    公开(公告)日:2012-12-04

    申请号:US12224253

    申请日:2007-09-20

    IPC分类号: C22C38/22 C21D8/00 C22C38/00

    摘要: The present invention provides a fire-resistant steel material superior in HAZ toughness of a welded joint which is high in high temperature yield strength at an envisioned fire temperature of 700 to 800° C. and is free of embrittlement of the welded joint even if exposed at this envisioned fire temperature and a method of production of the same, that is, a fire-resistant steel material of a composition containing, by mass %, C: 0.005% to less than 0.03%, Si: 0.01 to 0.50%, Mn: 0.05 to 0.40%, Cr: 1.50 to 5.00%, V: 0.05 to 0.50%, and N: 0.001 to 0.005% and restricted in contents of Ni, Cu, Mo, B, P, S, and O obtained by heating a steel slab to 1150 to 1300° C., then hot working or hot rolling the slab to an end temperature of 880 degrees or more, acceleratedly cooling the worked or rolled steel material under conditions of a cooling rate at a position of the slowest cooling rate of at least 2° C./sec or more, stopping this accelerated cooling at a temperature region where the surface temperature of the steel material becomes 350 to 600° C., and then allowing the material to cool.

    摘要翻译: 本发明提供一种在700-800℃的预期的火焰温度下,在高温屈服强度高的焊接接头的HAZ韧性优异的耐火钢材料,即使暴露于焊接接头也不会发生脆化 在这种预想的耐火温度及其制造方法中,即,以质量%计含有C:0.005〜小于0.03%的Si:0.01〜0.50%的组成的耐火钢材,Mn:0.01〜 :0.05〜0.40%,Cr:1.50〜5.00%,V:0.05〜0.50%,N:0.001〜0.005%,通过加热得到的Ni,Cu,Mo,B,P,S, 钢板坯坯为1150〜1300℃,然后热轧或热轧板坯至880度以上的终止温度,在冷却速度最慢的位置的条件下,对加工后的钢材进行加速冷却 至少2℃/ sec以上,在表面的温度区域停止加速冷却 钢材的温度变为350〜600℃,然后使材料冷却。

    Thermomechanical methodology for stabilizing shape memory alloy (SMA) response
    6.
    发明授权
    Thermomechanical methodology for stabilizing shape memory alloy (SMA) response 有权
    用于稳定形状记忆合金(SMA)响应的热力学方法

    公开(公告)号:US08409372B1

    公开(公告)日:2013-04-02

    申请号:US12874523

    申请日:2010-09-02

    IPC分类号: C22F1/00 C21D1/54 C21D1/55

    摘要: Methods and apparatuses for stabilizing the strain-temperature response for a shape memory alloy are provided. To perform stabilization of a second sample of the shape memory alloy, a first sample of the shape memory alloy is selected for isobaric treatment and the second sample is selected for isothermal treatment. When applying the isobaric treatment to the first sample, a constant stress is applied to the first sample. Temperature is also cycled from a minimum temperature to a maximum temperature until a strain on the first sample stabilizes. Once the strain on the first sample stabilizes, the isothermal treatment is performed on the second sample. During isothermal treatment, different levels of stress on the second sample are applied until a strain on the second sample matches the stabilized strain on the first sample.

    摘要翻译: 提供了用于稳定形状记忆合金的应变 - 温度响应的方法和装置。 为了进行形状记忆合金的第二样品的稳定化,选择形状记忆合金的第一样品用于等压处理,并且选择第二样品进行等温处理。 当将等压处理应用于第一样品时,对第一样品施加恒定的应力。 温度也从最低温度循环到最高温度,直到第一个样品上的应变稳定。 一旦第一个样品的应变稳定,对第二个样品进行等温处理。 在等温处理过程中,施加第二个样品的不同应力水平,直到第二个样品上的应变与第一个样品上的稳定菌株相匹配。

    Fire-Resistant Steel Material Superior in Haz Toughness of Welded Joint and Method of Production of Same
    8.
    发明申请
    Fire-Resistant Steel Material Superior in Haz Toughness of Welded Joint and Method of Production of Same 有权
    焊接接头耐火韧性优良的耐火钢材料及其生产方法

    公开(公告)号:US20090053097A1

    公开(公告)日:2009-02-26

    申请号:US12224253

    申请日:2007-09-20

    IPC分类号: C22C38/22 C22C38/00 C21D8/00

    摘要: The present invention provides a fire-resistant steel material superior in HAZ toughness of a welded joint which is high in high temperature yield strength at an envisioned fire temperature of 700 to 800° C. and is free of embrittlement of the welded joint even if exposed at this envisioned fire temperature and a method of production of the same, that is, a fire-resistant steel material of a composition containing, by mass %, C: 0.005% to less than 0.03%, Si: 0.01 to 0.50%, Mn: 0.05 to 0.40%, Cr: 1.50 to 5.00%, V: 0.05 to 0.50%, and N: 0.001 to 0.005% and restricted in contents of Ni, Cu, Mo, B, P, S, and O obtained by heating a steel slab to 1150 to 1300° C., then hot working or hot rolling the slab to an end temperature of 880 degrees or more, acceleratedly cooling the worked or rolled steel material under conditions of a cooling rate at a position of the slowest cooling rate of at least 2° C./sec or more, stopping this accelerated cooling at a temperature region where the surface temperature of the steel material becomes 350 to 600° C., and then allowing the material to cool.

    摘要翻译: 本发明提供一种在700-800℃的预期的火焰温度下,在高温屈服强度高的焊接接头的HAZ韧性优异的耐火钢材料,即使暴露于焊接接头也不会发生脆化 在这种预想的耐火温度及其制造方法中,即,以质量%计含有C:0.005〜小于0.03%的Si:0.01〜0.50%的组成的耐火钢材,Mn:0.01〜 :0.05〜0.40%,Cr:1.50〜5.00%,V:0.05〜0.50%,N:0.001〜0.005%,通过加热得到的Ni,Cu,Mo,B,P,S, 钢板坯坯为1150〜1300℃,然后热轧或热轧板坯至880度以上的终止温度,在冷却速度最慢的位置的条件下,对加工后的钢材进行加速冷却 至少2℃/ sec以上,在表面的温度区域停止加速冷却 钢材的温度变为350〜600℃,然后使材料冷却。

    Tool steel production method
    10.
    发明授权
    Tool steel production method 失效
    工具钢生产方法

    公开(公告)号:US5458703A

    公开(公告)日:1995-10-17

    申请号:US110925

    申请日:1993-08-24

    申请人: Norihiko Nakai

    发明人: Norihiko Nakai

    CPC分类号: G01N27/725 C21D1/18 C21D1/54

    摘要: A tool steel production method and a tool steel are disclosed in this invention. The method consists of following two steps:1. Toughness (Ch) of the tool steel is evaluated from a formula:Ch=f(Vp, H, T)after estimating Vp, a square sum of output voltage of total Barkhausen noise signals which are produced in the process of magnetization of the tool steel sample, and measuring temperring hardness (H) and hardening temperature (T) of the tool steel sample.2. A tool steel having a required toughness is produced by adjusting temperring hardness (H) and/or hardening temperature (T) based on the toughness evaluation of the tool steel sample mentioned above.

    摘要翻译: 本发明公开了一种工具钢的制造方法和工具钢。 该方法由以下两个步骤组成:1.工具钢的韧性(Ch)由下式计算:Ch = f(Vp,H,T),估计Vp后,总共巴克豪森噪声信号的输出电压平方和 在工具钢样品的磁化过程中产生,并测量工具钢样品的回火硬度(H)和硬化温度(T)。 2.根据上述工具钢试样的韧性评价,通过调整回火硬度(H)和/或硬化温度(T)来制造具有所需韧性的工具钢。