摘要:
The present disclosure relates to a process and system for recovery of one or more metal values using solution extraction techniques and to a system for metal value recovery. In an exemplary embodiment, the solution extraction system comprises a first solution extraction circuit and a second solution extraction circuit. A first metal-bearing solution is provided to the first and second circuit, and a second metal-bearing solution is provided to the first circuit. The first circuit produces a first rich electrolyte solution, which can be forwarded to primary metal value recovery, and a low-grade raffinate, which is forwarded to secondary metal value recovery. The second circuit produces a second rich electrolyte solution, which is also forwarded to primary metal value recovery. The first and second solution extraction circuits have independent organic phases and each circuit can operate independently of the other circuit.
摘要:
A process for producing a ferric containing solution by the controlled oxidation of a ferrous containing solution, said process including providing a solution containing at least ferrous ions; treating the solution with one or more inlet gases containing sulfur dioxide and oxygen in order to oxidize said ferrous ions to ferric ions, wherein the delivery rate of the sulfur dioxide gas is oxidation rate limiting; and controlling the concentration of dissolved oxygen in said solution at an optimum value.
摘要:
Process for the in-situ leaching of uranium from a subterranean ore deposit comprising introducing into the deposit an aqueous lixiviant having a pH of at least 6.0 and containing an alkali metal sulfate leaching agent. The alkali metal sulfate may be employed in combination with an alkali metal carbonate or bicarbonate with the sulfate comprising the predominant leaching agent. The lixiviant may be at a pH of at least 7.5 and contain an alkali metal sulfate leaching agent and a hypochlorite oxidizing agent.
摘要:
An in situ recovery of uranium operation involves circulating reactive fluids through an underground uranium deposit. These fluids contain chemicals that dissolve the uranium ore. Uranium is recovered from the fluids after they are pumped back to the surface. Chemicals used to accomplish this include complexing agents that are organic, readily degradable, and/or have a predictable lifetime in an aquifer. Efficiency is increased through development of organic agents targeted to complexing tetravalent uranium rather than hexavalent uranium. The operation provides for in situ immobilization of some oxy-anion pollutants under oxidizing conditions as well as reducing conditions. The operation also artificially reestablishes reducing conditions on the aquifer after uranium recovery is completed. With the ability to have the impacted aquifer reliably remediated, the uranium recovery operation can be considered inherently safe.
摘要:
A method of recovering contaminating or valuable components from a solid feed material (10), includes feeding the material (10) into an optional grinder as a pretreatment (12), then into a heated melter (14) along with a material (16) that provides fluorine, to provide a molten or semi-molten material, where the molten material is then reacted with water or an acid solution (22) in vessel (20), to form a dissolved molten or semi-molten salt in solution, which can be passed to extractor (26) or the like and provide a concentrated stream of the valuable or contaminating components (30).
摘要:
Mineral values, particularly uranium, are recovered from ground mineral-containing ore by contacting the ground ore with an oxidizing gas and leaching with an acidic or alkaline leach solution. The oxidizing gas treatment significantly increases minerals recovery and/or significantly reduces the severity of the conditions required, particularly the temperature and the concentration of leach chemicals. Further improvements are attained by separating a total ore into a coarse fraction and a fines fraction and separately treating at least a part of these two fractions. The sequence of operations, i.e., treating with oxidizing gas and leaching, the manner of leaching and the conditions of leaching are varied to obtain significantly improved results, based on the discoveries that a coarse fraction is substantially easier to leach than the total ore or the fines fraction and treatment with an oxidizing gas significantly improves the ease of leaching, particularly of the fines fraction.
摘要:
A process for the continuous leaching of ores and an apparatus for practising this continuous leaching process are disclosed. According to this process, a plurality of unit layers composed of a pulverized uranium ore or other ore are continuously laminated while a minimum necessary amount of an acid, alkali or organic solvent (hereinafter referred to as "solvent") is uniformly sprinkled on the flat surfaces of these unit layers. In the state where the concentration of the solvent mixed into the ore is maintained at a high level, the heat generated by exothermic reaction caused by contact among the solvent, ore and water is effectively stored and used for thermally curing the ore. According to this process, the speed of extraction of the intended metal component can be increased, the leaching time shortened and the filtration characteristics improved, whereby a highly concentrated pregnant liquor can be recovered at a high efficiency.
摘要:
In a process for the solution mining of a uranium ore formation using an aqueous alkaline carbonate leaching solution containing hydrogen peroxide as oxidant, the solution is passed through the ore formation in the presence of an alkylidene-1,1-diphosphonic acid. Such an acid has been found to be unique in its capability for stabilizing the peroxide against decomposition in the presence of the uranium ore.