摘要:
A fiber coating which allows ceramic or metal fibers to be wetted by molten metals is disclosed. The coating inhibits degradation of the physical properties caused by chemical reaction between the fiber and the coating itself or between the fiber and the metal matrix. The fiber coating preferably includes at least a wetting layer, and in some applications, a wetting layer and a barrier layer between the fiber and the wetting layer. The wetting layer promotes fiber wetting by the metal matrix. The barrier layer inhibits fiber degradation. The fiber coating permits the fibers to be infiltrated with the metal matrix resulting in composites having unique properties not obtainable in pure materials.
摘要:
A low temperature process is described for forming a coating or powder comprising one or more metals or metal compounds by first reacting one or more metal reactants with a halide-containing reactant to form one or more reactive intermediates capable of reacting, disproportionating, or decomposing to form a coating or powder comprising the one or more metal reactants. When one or more metal compounds are formed, either as powders or as coatings, a third reactant may be injected into a second reaction zone in the reactor to contact the one or more reactive intermediates formed in the first reaction zone to thereby form one or more metal compounds such as metal nitrides, carbides, oxides, borides, or mixtures of same.
摘要:
A gas phase surface treatment for treating carbon fiber including (a) exposing a carbon fiber to a gaseous oxidizing atmosphere to form a modified carbon fiber with an oxidized fiber surface; followed by (b) exposing the oxidized fiber surface to a gaseous nitrogen-containing atmosphere to form a modified carbon fiber with a nitrogen-enriched surface, wherein the nitrogen-enriched surface exhibits an increase in surface nitrogen to surface carbon (N/C) ratio as compared to the surface of the carbon fiber prior to exposure at (a). Steps (a) and (b) are carried out continuously without any additional intervening surface treatment.
摘要:
Superconducting fiber bundle which contains a multiplicity of carrier fibers such as, for instance, carbon fibers, boron fibers, steel fibers coated with a superconducting layer of a niobium compound of the general formula NbC.sub.x N.sub.y O.sub.z (x+y+z less than or equal to 1), characterized by the feature that the superconducting layer consists of fine-grained B1-structure niobium compound, the mean grain size of which is between 3 and 50 nm.
摘要翻译:含有多种载体纤维例如碳纤维,硼纤维,涂覆有通式NbC x N y O z的铌化合物超导层的钢纤维(x + y + z小于或等于1)的超导纤维束 ),其特征在于超导层由细粒度的B1结构的铌化合物组成,其平均晶粒尺寸在3和50nm之间。
摘要:
Manufacture of superconducting fiber bundle coated with niobium carbonitride by a combination of the CVD process with a plasma activation under a low total gas pressure in which niobium chloride, carbon and nitrogen are reacted to produce the niobium compound which deposits from the gaseous phase on the carrier fiber to form a superconducting layer thereon. The combination of CVD process and plasma activation produces more uniform superconducting layers with smaller grain sizes. The application of an ultrasonic field may be combined with the CVD process. The superconducting layer consists of fine-grained B1-structure niobium compound, the mean grain size of which is between 3 and 50 nm.
摘要:
A method of making a composite article and a composite article specifically adapted for use in high temperature, corrosive and errosive environments comprising a carbon fibrous substrate, including a pyrolytic carbon sheath formed about each fiber of the substrate; a metallic carbide, oxide, or nitride compliant coating over the coated fibers of the substrate; and an impermeable metallic carbide, oxide or nitride outer protective layer formed about the entire periphery of the coated substrate. In accordance with the method of the invention, the compliant metallic coating is applied to the fibers in a manner such that any mechanical stresses built-up in the substrate due to a mismatch between the coefficient of thermal expansion of the fibrous substrate and the coating are effectively accomodated.
摘要:
Preceramic polymers which have particular utility in providing protective ceramic coatings on carbon/carbon composites, graphite, carbon fibers, and other normally oxidizable materials are prepared by reacting about 0.25-20 parts by weight of a trialkoxy-, triaryloxy-, or tri(arylalkoxy)boroxine with one part by weight of a polysiloxazane in an organic solvent to form an organoborosiloxazane polymer.
摘要:
The present invention relates to a fibrous material for composite materials, a fiber-reinforced metal produced therefrom, and a process for producing same. The fibrous material is composed of continuous filament fibers selected from heat resistant substances and short fibers, whiskers, or powders selected from heat resistant substances. The fiber-reinforced metal is composed of the fibrous material and a matrix metal, has a reduced anisotropy of mechanical properties, and can be made at my desired fiber volume ratio.
摘要:
A method of making a composite article and a composite article specifically adapted for use in high temperature, corrosive and errosive environments comprising a carbon fibrous substrate, including a pyrolytic carbon sheath formed about each fiber of the substrate; a metallic carbide, oxide, or nitride compliant coating over the coated fibers of the substrate; and an impermeable metallic carbide, oxide or nitride outer protective layer formed about the entire periphery of the coated substrate. In accordance with the method of the invention, the compliant metallic coating is applied to the fibers in a manner such that any mechanical stresses built-up in the substrate due to a mismatch between the coefficient of thermal expansion of the fibrous substrate and the coating are effectively accomodated.
摘要:
A gas phase surface treatment for treating carbon fiber including (a) exposing a carbon fiber to a gaseous oxidizing atmosphere to form a modified carbon fiber with an oxidized fiber surface; followed by (b) exposing the oxidized fiber surface to a gaseous nitrogen-containing atmosphere to form a modified carbon fiber with a nitrogen-enriched surface, wherein the nitrogen-enriched surface exhibits an increase in surface nitrogen to surface carbon (N/C) ratio as compared to the surface of the carbon fiber prior to exposure at (a). Steps (a) and (b) are carried out continuously without any additional intervening surface treatment.